

The ATLAS detector evolution towards the High Luminosity era

On behalf of the ATLAS Collaboration

Physics motivation for High Luminosity LHC

Extend the reach of LHC physics program

- Pursue exploration of Electroweak
 Symmetry Breaking in the Standard
 Model
 - Precision measurements (e.g. Higgs couplings, gauge boson cross-sections)
 - Search for SM rare processes (e.g. $H \rightarrow \mu\mu$, weak boson scattering, etc.)
- Search for new physics in new regions of phase space
 - Rare processes
 - Challenging experimental signatures

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplaysFromHiggsSearches

The road to High Luminosity LHC

are

here

HL-LHC design targets

- Center-of-mass energy: 14 TeV
- Peak levelled instantaneous luminosity of $7.5 \times 10^{34} \ \mathrm{cm^{-2} s^{-1}}$
- Total integrated luminosity of up to $4000~{\rm fb}^{-1}$

High Luminosity Challenges

- High pile-up up to ~ 200 collisions/bunch crossing
- High radiation levels: $\sim 10^{16}~n_{eq}/cm^2$ and 10 MGy
- Major upgrades to the ATLAS detector necessary to maintain good physics performance under HL-LHC conditions
 - Upgrades designed to be carried out in two phases

ATLAS detector evolution

Other systems also being upgraded, e.g. LUCID-3 and BCM' used for luminosity measurements.

Phase-1 Upgrade

Improved trigger capabilities (granularity, new functionalities)

Phase-2 Upgrade

Full detector capability for HL-LHC

Ti	ra	ck	in	q
		O .		J

• New all-silicon inner tracker with $|\eta| < 4$

Timing

New high-granularity timing detector

Calorimeter

• LAr: New L1 trigger electronics

- LAr: New continuous readout
- Tile: New continuous readout

Muon

New Small Wheels

- New muon chambers in barrel inner region.
- New continuous readout

TDAQ

- New trigger hardware
 - Increase purity of e/γ triggers
 - Reduce muon trigger fake rate in forward regions

New trigger hardware

- Achieve first level trigger rate of
 1 MHz with 10 μs latency.
- Increase final trigger output rate to 10 kHz
- New "hardware track trigger" used in Event Filter.

Tracking Upgrade (Phase-2)

- New all-silicon inner tracker (ITk)
 - Pixel + Strips sensors
 - Planar and 3D Pixels: $50 \times 50 \mu m^2$ ($25 \times 100 \ \mu m^2$ in flat pixel barrel)
 - ° Strips width: $\sim 75 \ \mu m$
 - 4 double-strip + 5 pixel layers = minimum of 13 hits in barrel (9 hits in forward) region.
 - Large pseudo rapidity coverage $|\eta| < 4.0$
 - Total $\sim 178 \text{ m}^2 \text{ of silicon}$
 - Innovative pixel support structures to position modules at an angle.
- ITk has less material than current Inner Detector (despite increase in channels, data rates, ...)

1200

1000

600

1400 ATLAS Simulation Preliminary

ITk Layout - ATLAS-P2-ITK-23-00-00

 $\eta = 1.0$

 $\eta = 2.0$

 $\eta = 3.0$

 $\eta = 4.0$

Tracking Upgrade: Expected performance

Track reconstruction efficiency

- Comparable to current inner detector (ID).
- Track efficiency ~ uniform down to $|\eta|$ of 4, despite pile-up of 200.

Fake rate

- Order of magnitude reduction in fake rate with ITk compared to current ID.
- Achieve high purity tracking even with pile-up of 200.

ITk expected to outperform current Inner Detector in all relevant parameters.

High-Granularity Timing Detector (Phase-2)

- HGTD designed to improve ATLAS performance in the forward region under increasing pile-up using timing information.
 - Use high-precision timing information to distinguish between collisions occurring close in space but well-separated in time.

Challenges:

- New detector system constrained by limited available space.
 - Thickness of 12.5 cm
- Require time resolution: 30-50 ps/track
- Radiation hardness
 - Expect fluence > $5.6 \times 10^{15} \text{ n}_{eq}/\text{cm}^2$
 - Total ionizing dose ~ 3.3 MGy

HGTD design:

- Silicon Low Gain Avalanche Detector (LGAD) technology
- Located between barrel and endcap calorimeters, covering $2.4 < |\eta| < 4.0$.
- Two disk/side and two sensor layers/disk.
- Detector segmented into replaceable rings.

Calorimeters Upgrade

 ATLAS calorimeters expected to continue to operate reliably during HL-LHC data taking.

- Phase-1 Upgrade (see next slide)
 - New trigger electronics.
 - Improve trigger energy resolution and efficiency for electrons, photons, τ leptons, jets, and missing transverse momentum.

Phase-2 Upgrade

- New readout electronics enabling data streaming at 40 MHz for LAr and Tile calorimeters.
 - Radiation tolerance requirements at HL-LHC beyond existing electronics.
 - Current readout electronics incompatible with planned upgrade of T/DAQ system.

Calorimeters Upgrade: Run-3 Performance

Higher-granularity, higher-resolution and longitudinal shower information from the LAr calorimeter to the first level trigger processors.

Trigger electron fake rate reduction

Improved trigger jet energy resolution

Muon System Upgrade

- Muon system made of different types of gas ionization chambers interspersed around toroid magnets.
 - HL-LHC environment challenging for some chambers (e.g RPC).

Phase-1 Upgrade

- Reduce L1 muon trigger fake rate in forward region.
- Improve L1 muon trigger momentum resolution.

Phase-2 Upgrade

- Increase RPC and TGC trigger coverage in barrel and endcap.
- Further reduce trigger fake rate in barrel and end-cap regions.
- Further improve muon trigger momentum resolution.

Trigger chambers

Precision coordinate measurement

 $1.3 < |\eta| < 2.7$

 Replacement of inner endcap wheel by the New Small Wheels

- Small-strip Thin Gap Chambers

- Primary trigger
- Track segment with < 1 mrad resolution

- MicroMegas

- Primary precision tracking
- $^{\circ}$ Spatial resolution < 100 μm

- System redundancy

- Both technologies used for trigger and precision measurements.
- Total of 16 space points:8 MM + 8 sTGC
- NSW trigger and readout electronics.
- Reduce muon trigger fake rate by x7.

- New readout and trigger electronics
 - Current trigger and readout electronics incompatible with planned update of T/DAQ system and required to provide additional capabilities.

Brigitte Vachon (McGill) 25-May-2021

- New readout and trigger electronics
 - Current trigger and readout electronics incompatible with planned update of T/DAQ system and required to provide additional capabilities.
- New Barrel Inner RPC layer.
- New EIL4 TGC triplet module.

- New readout and trigger electronics
 - Current trigger and readout electronics incompatible with planned update of T/DAQ system and required to provide additional capabilities.
- New Barrel Inner RPC layer.
- New EIL4 TGC triplet module.
- Combine NSW-TGC trigger information.

Decrease in fake trigger rate

- New readout and trigger electronics
 - Current trigger and readout electronics incompatible with planned update of T/DAQ system and required to provide additional capabilities.
- New Barrel Inner RPC layer.
- New EIL4 TGC triplet module.
- Combine NSW-TGC trigger information.
- Use MDT data at the first trigger level.

Improvement in trigger momentum resolution

Trigger / DAQ Upgrade

- Two-level trigger architecture.
- Phase-1/2: Evolution of many interfaces, firmware, algorithms, etc.

Trigger / DAQ Upgrade

- Two-level trigger architecture.
- Phase-1/2: Evolution of many interfaces, firmware, algorithms, etc.
- Phase-1:
 - Increase background rejection of e/γ triggers (\rightarrow New LAr trigger electronics)
 - Improve muon trigger reconstruction and fake rate in endcap (→ NSW)

Trigger / DAQ Upgrade

- Two-level trigger architecture.
- Phase-1/2: Evolution of many interfaces, firmware, algorithms, etc.
- Phase-2:
 - Provide the required **bandwidth** and **processing capacity** to efficiently select events at HL-LHC.
 - Exploit full detector granularity in first trigger level
 - Improve efficiency for muon-based triggers
 - Perform hardware-based tracking profiting from extended coverage of the ITk.
 - Characteristics:
 - First level hardware trigger based on muon and calorimeter data with maximum rate of 1 MHz and 10 µs latency.
 - Average final trigger output rate to 10 kHz
 - Tracking data used at Event Filter using "Hardware Track Trigger"

Summary

- Experimental conditions at HL-LHC will exceed current ATLAS detector capabilities.
 - Major upgrade to the ATLAS detector required
 - take advantage of new technologies and ideas
 - Design for flexibility and capacity
- ATLAS upgrades staged into two phases.
 - Phase-1 Upgrades
 - NSW, LAr trigger electronics, TDAQ
 - Commissioning in full swing at CERN.
 - Phase-2 Upgrades:
 - ITk, HGTD, Calorimeters electronics, Muon system, TDAQ
 - Most components in prototyping cycle or in some cases, starting pre-production soon.
- Impact of COVID-19 pandemic
 - Lock down of labs, reduced lab operation efficiency, delays in component delivery schedule.

Evolution of ATLAS detector will enable full physics potential of HL-LHC

Brigitte Vachon (McGill) 25-May-2021