Initial Performance of the GlueX DIRC Detector

International Conference on Technology and Instrumentation in Particle Physics

Roman Dzhygadlo

GSI Helmholtzzentrum für Schwerionenforschung GmbH

on behalf of the GlueX DIRC group

- GlueX experiment
- DIRC assembly
- Commissioning results
- Summary

CATHOLIC UNIVERSITY

of AMERICA

THE

24-28 May 2021, TRIUMF

TIPP 2021

GlueX Experiment

- Located at Jefferson Laboratory
- Initial beam provided by Continuous Electron Beam Accelerator Facility (CEBAF)
- Hall D tagged coherent photon beam up 12 GeV

CEBAF:

GlueX detector in Hall D:

GlueX Experiment

- Phase-I: light quark meson (hybrid) spectroscopy. PID: baseline π/K tracks separation up to ~2 GeV/c provided by time-of-flight
- Phase-II: high-luminosity strangeness program. PID: 3 s.d. π/K tracks separation up to 3.7 GeV/c by DIRC

PID coverage

with DIRC

20

TIPP'21, 24-28 May 2021, TRIUMF

momentum [GeV/c]

Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector based on total internal reflection of Cherenkov light

- Charged particle traversing radiator with refractive index $(n_1 \approx 1.47)$ and $\beta = v/c > 1/n$ emits Cherenkov photons on cone with half opening angle $\cos \theta_c = 1/\beta n(\lambda)$
- Some photons are always totally internally reflected for $\beta \approx 1$ tracks
- Radiator and light guide: polished, long rectangular bar made from Synthetic Fused Silica ("Quartz")
- Proven to work (BABAR DIRC)

Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector based on total internal reflection of Cherenkov light

- Charged particle traversing radiator with refractive index $(n_1 \approx 1.47)$ and $\beta = v/c > 1/n$ emits Cherenkov photons on cone with half opening angle $\cos \theta_c = 1/\beta n(\lambda)$
- Some photons are always totally internally reflected for $\beta \approx 1$ tracks
- Radiator and light guide: polished, long rectangular bar made from Synthetic Fused Silica ("Quartz")
- Proven to work (BABAR DIRC)

Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector based on total internal reflection of Cherenkov light

- Charged particle traversing radiator with refractive index $(n_1 \approx 1.47)$ and $\beta = v/c > 1/n$ emits Cherenkov photons on cone with half opening angle $\cos \theta_c = 1/\beta n(\lambda)$
- Some photons are always totally internally reflected for $\beta \approx 1$ tracks
- Radiator and light guide: polished, long rectangular bar made from Synthetic Fused Silica ("Quartz")
- Proven to work (BABAR DIRC)

Detection of Internally Reflected Cherenkov Light

Novel type of Ring Imaging CHerenkov detector based on total internal reflection of Cherenkov light

- Charged particle traversing radiator with refractive index $(n_1 \approx 1.47)$ and $\beta = v/c > 1/n$ emits Cherenkov photons on cone with half opening angle $\cos \theta_c = 1/\beta n(\lambda)$
- Some photons are always totally internally reflected for $\beta \approx 1$ tracks
- Radiator and light guide: polished, long rectangular bar made from Synthetic Fused Silica ("Quartz")
- Proven to work (BABAR DIRC)

GlueX DIRC

Mirrors

Photon Detection and Readout

8 x 8 pixels each

- Photosensors: 180 H12700 MaPMT
- Electronics: MAROC3-based (from CLAS12 RICH)
- 11520 channels (timing resolution ~1 ns)

Readout Assembly and Optical Coupling

Quartz window

Optical coupling: silicone RTV-615 cookies (saves up to 15% photons)

Applying silicon cookies to MaPMT:

7/21

TIPP'21, 24-28 May 2021, TRIUMF

Roman Dzhygadlo

GlueX DIRC Assembly

Installation / data taking timeline:

- Lower box assembly: Jan 2018
- Lower box commissioning: Feb 2018
- Upper box assembly and installation: Nov 2018
- Full DIRC commissioning: Feb 2019 and Dec 2019
- Production data: Spring / Summer 2020 (used for performance evaluation)

Bar boxes covered by TEVLAR fabric for light tightness

Performance Evaluation

Reference PID from kinematically identified pions and kaons:

Hit Patterns

GSÏ

10/21

TIPP'21, 24-28 May 2021, TRIUMF

Roman Dzhygadlo

Hit Patterns

TIPP'21, 24-28 May 2021, TRIUMF

Roman Dzhygadlo

10/21

F

Hit Patterns

Good agreement between beam data and simulation

Geometrical Reconstruction

- Adapted from PANDA Barrel DIRC reconstruction
- Geometrical algorithm determines Cherenkov angle per photon using Look Up Tables

 PID: unbinned maximum likelihood fit to the Cherenkov angle distribution per photon for different mass hypotheses

Photon Propagation Time

TIPP'21, 24-28 May 2021, TRIUMF

Roman Dzhygadlo

13/21

Reconstructed Photon Yield

- Simulation overestimates photon yield by 36%
- Observed degradation of mirror surfaces due to corrosion in water during 2020
- Improved protection of the mirror surfaces is foreseen for next data taking period

Reconstructed Photon Yield

- Simulation overestimates photon yield by 36%
- Observed degradation of mirror surfaces due to corrosion in water during 2020
- Improved protection of the mirror surfaces is foreseen for next data taking period

Single Photon Resolution

Reconstructed Cherenkov angle for pions and kaons @ 3.5 GeV/c:

Good agreement between beam data and simulation

Chromatic Correction

 Refractive index and therefore Cherenkov angle depend on energy of emitted photons

 Cherenkov angle corrected by photon propagation time difference

Clear improvement of Cherenkov angle resolution per photon after correction

Single Photon Resolution Map

Good agreement between beam data and simulation

Cherenkov Track Resolution

• 8.5 / 2.2 = 3.8 s.d. separation @ 3.5 GeV/c (π /K Cherenkov angle difference is 8.5 mrad)

- Non Gaussian tails reduce the performance
- Simulation predicts 1.2 mrad for correlated term b further improvements are possible

Separation Power

Difference between beam data and simulation reflects difference of the correlated term

Summary

- Successful DIRC commissioning (2019) and fist GlueX II physics run (2020)
- GlueX DIRC worked right from the start, bar boxes fully functional, hit patterns as expected
- Reconstructed Cherenkov angle resolution per photon agrees with design and simulation
- Initial DIRC performance achieved: 3.0 ± 0.1 s.d. π/K separation at 3.5 GeV/c
- Analysis well underway, performance expected to improve with better calibration

Summary

- Successful DIRC commissioning (2019) and fist GlueX II physics run (2020)
- GlueX DIRC worked right from the start, bar boxes fully functional, hit patterns as expected
- Reconstructed Cherenkov angle resolution per photon agrees with design and simulation
- Initial DIRC performance achieved: 3.0 ± 0.1 s.d. π/K separation at 3.5 GeV/c
- Analysis well underway, performance expected to improve with better calibration

Thank you for the attention

TIPP'21, 24-28 May 2021, TRIUMF

Roman Dzhygadlo

Backup 01: Mirror Surface Degradation

Type II anodized AI strongback in optical box. Coated with white cloudy residue after few months in water.

South/lower box experience: Oct 2018 - May 2019, optical box suffered from degradation in water

Pitted surface

- Mirror developed non-removable white traces
- Reflective coating are pitted
- White residue on the anodized surfaces

W. Li & J. Schwiening | GlueX DIRC | INSTR'20

TIPP'21, 24-28 May 2021, TRIUMF

Roman Dzhygadlo

22