STCF RICH detector design and R&D

Wang Bin-Long
On behalf of the STCF RICH group

University of Chinese Academy of Sciences
The 5th TIPP Conference
• **Super Tau-Charm Facility**

- **STCF**: a natural extension of BEPCII and a viable option for a post-BEPCII HEP project in China

- $E_{cm} = 2 - 7 \text{ GeV}, \ L \sim 0.5 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}@4\text{GeV}$

- Symmetrical collision

- Double-ring, 600-800 m

- Large Piwinski angle & Crab waist

- Upgradable for polarized electron beam

A Super $\tau - C$ machine far beyond BEPCII
Physics opportunities

- Hadron form factors
- $\Upsilon(2175)$ resonance
- Multiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions
- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton
- XYZ particles
- D mesons
- f_D and f_{D_s}
- D_0-\bar{D}_0 mixing
- Charm baryons

S.Olsen HIEPA 2015 Workshop
STCF Detector Concept

- PXD
 - \(0.15% X_0 \) / layer
 - \(\sigma_{xy} \approx 50 \) \(\mu m \)

- MDC
 - \(\sigma_{xy} \approx 130 \) \(\mu m \)
 - \(\sigma_p/p \approx 0.5\% \) @ 1 GeV
 - \(dE/dx \approx 6\% \)

- PID
 - \(\pi/K \) (and \(K/p \)) 3-4\(\sigma \) separation up to 2 GeV/c

- EMC
 - E range: 0.02-2.5 GeV
 - At 1 GeV \(\sigma_E \) (%)
 - Barrel: 2
 - Endcap: 4

- MUD
 - Down to \(< 0.4 \text{ GeV} \)
 - \(\pi \) suppression >10
The 5th TIPP Conference

PID Detector Requirements

- Wide PID range
 - Cherenkov-based technology
 - Low p region (<0.6GeV) covered by trackers dE/dx measurement
- Compact (<20cm) and low material budget (< 0.5X₀)
 - Limited optical focusing methods
 - RICH/FTOF/DIRC
- Large solenoid angle coverage

- E_{cm} being up to 7 GeV calls for PID in a large momentum range (up to 2GeV/c)
- Technology beyond dE/dx + TOF is required for PID up to 2GeV

PID

- π/K (and K/p) 3~4σ separation up to 2 GeV/c
- π/μ separation capacity for low momentum.
RICH Design

- $3\sigma \pi/ K @ 2\text{GeV}$
- Material budget: $\sim 15\%$
- Thickness: $\sim 100\text{mm}$
- Rate: $<5\text{kHz/cm}^2@ R>20\text{cm}$
- Gain: $\sim 10^5$
- IBF: $\sim 10^{-3}$
- Cum. Charge: $<2\text{uC/cm}^2@ 10\text{year}$
- Pad: $0.5\times 0.5\text{cm}^2$
- Expected Res: $<1.5\text{ mrad}$

- Proximity focusing RICH with CsI-coated MPGD readout
- Proximity gap $\sim 10\text{ cm}$, Sensor size $5\text{mm}\times 5\text{mm}$
- Radiator: liquid C_6F_{14}, $n\sim 1.3$
The 5th TIPP Conference

Hard to find analytic equation ⇒ Likelihood method.

- The photon collected in each anode pads follows the Poisson distribution

\[pdf_{i,h} = Poisson\left(N_i + 10^{-3}, mean_{i,h} + 10^{-3}\right), \]

- Likelihood of h hypothesis:

\[\ln L_h = \sum_i^{npads} \ln pdf_{i,h} \]

- \(\pi, K \) separation:

\[DLL = \sum_i^{npads} \ln \left(\frac{pdf_{i,\pi}}{pdf_{i,K}}\right) \]

\[-2DLL_{\pi/K} \]

\[3.32\sigma \pi/K \] separation
Likelihood Method PID Power

PID efficiency for π as π

K/π 3.3σ separation up to 2.0GeV/c
K/p 3.3σ separation up to 2.0GeV/c
Low Momentum μ/π Separation

π efficiency

μ efficiency

>90% pid efficiency for momentum range (0.3GeV/c~0.5GeV/c) and polar angle (0°~40°)
Classification using CNN

Using CNN to classify three hadrons.

PID efficiency ~ similar level of likelihood method.

Highly accelerate the execution time to 2evt/ms (1 2080Ti).
Develop the RICH Prototype

- Effective area: 16X16 cm²
- Quartz as radiator (10mm) will be replaced by C6F14
- THGEM+CsI (700nm)
- Anode pad (5mm²)
- AGET FEE: 1024 channels
RICH prototype beam-test @DESY

a) RICH prototype

b) RICH in position

c) Test-beam
Spatial resolution

Trigger:
S1 & S2

- **Track-VMM**
 - 0.4mm strip, 128*2

- **RICH-AGET**
 - 5mm pad, 32*32

- **Track-AGET**
 - 0.4mm strip, 128*2

Single event

T06 is getting worse due to the e-scattering
• Summary

- STCF PID requires 2GeV/c π/K separation, and RICH can satisfy this requirement.
- Via the Likelihood method, $>3\sigma$ separation capability can be reached by RICH in STCF. and can offer π/μ PID in low momentum range.
- Test-beam @DESY shows the current base-line design is functional and can fulfill the requirements. Preliminary results are presented.

Thank you !!
• backup
counting rate extrapolated from BESIII

- Barrel: 400 Hz/cm²
- Endcaps: 4kHz/cm²
- May include significant contributions from detector/electronics noise since no clear dependence on beam current is seen