STCF RICH
detector design and R&D

Wang Bin-Long
On behalf of the STCF RICH group

University of Chinese Academy of Sciences
The 5th TIPP Conference
• **Super Tau-Charm Facility**

 ▶ STCF: a natural extension of BEPCII and a viable option for a post-BEPCII HEP project in China

 • $E_{cm} = 2 - 7 \text{ GeV}, \ L \sim 0.5 \times 10^{35}\text{ cm}^{-2}\text{s}^{-1}@4\text{GeV}$
 • Symmetrical collision
 • double-ring, 600-800 m
 • Large Piwinski angle & Crab waist
 • Upgradable for polarized electron beam

A Super $\tau - C$ machine far beyond BEPCII
STCF Overview
Physics opportunities

- Hadron form factors
- \(Y(2175) \) resonance
- Multiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with \(\tau \) lepton

- XYZ particles
- D mesons
- \(f_D \) and \(f_{D_S} \)
- \(D_0 - D_0 \) mixing
- Charm baryons
STCF Detector Concept

PXD
- $\sim 0.15 \% X_0 / \text{layer}$
- $\sigma_{xy} \sim 50$ μm

MDC
- $\sigma_{xy} < \sim 130$ μm
- $\sigma_p/p \sim 0.5 \% @ 1$ GeV
- $dE/dx \sim 6\%$

PID
- π/K (and K/p) $3-4 \sigma$ separation up to 2GeV/c

EMC
- E range: 0.02-2.5GeV
- At 1 GeV $\sigma_E (\%)$
 - Barrel: 2
 - Endcap: 4

MUD
- Down to ~ 0.4GeV
- π suppression >10
The 5th TIPP Conference

PID Detector Requirements

- Wide PID range
 - Cherenkov-based technology
 - Low p region (<0.6 GeV) covered by trackers dE/dx measurement
- Compact (<20 cm) and low material budget (< 0.5X₀)
 - Limited optical focusing methods
 - RICH/FTOF/DIRC
- Large solenoid angle coverage

- \(E_{cm} \) being up to 7 GeV calls for PID in a large momentum range (up to 2 GeV/c)
- Technology beyond \(dE/dx + TOF \) is required for PID up to 2 GeV

PID

- \(\pi/K \) (and \(K/p \)) 3~4\(\sigma \) separation up to 2 GeV/c
- \(\pi/\mu \) separation capacity for low momentum.
RICH Design

- $3\sigma \pi/K @ 2\text{GeV}$
- Material budget: $\sim 15\%$
- Thickness: $\sim 100\text{mm}$
- Rate: $<5\text{kHz/cm}^2@R>20\text{cm}$
- Gain: $\sim 10^5$
- IBF: $\sim 10^{-3}$
- Cum. Charge: $<2\text{uC/cm}^2@10\text{year}$
- Pad: $0.5\times0.5\text{cm}^2$
- Expected Res: $<1.5\text{ mrad}$

- Proximity focusing RICH with CsI-coated MPGD readout
- Proximity gap $\sim 10\text{ cm}$, Sensor size $5\text{mm}*5\text{mm}$
- Radiator: liquid C_6F_{14}, $n\sim 1.3$
The 5th TIPP Conference

Hard to find analytic equation ⇒ Likelihood method.

- The photon collected in each anode pads follows the Poisson distribution

\[pdf_{i,h} = \text{Poisson} \left(N_i + 10^{-3}, \text{mean}_{i,h} + 10^{-3} \right), \]

- Likelihood of h hypothesis:

\[\ln L_h = \sum_i^{npads} \ln pdf_{i,h} \]

- \(\pi, K \) separation:

\[DLL = \sum_i^{npads} \ln \frac{pdf_{i,\pi}}{pdf_{i,K}} \]

- Likelihood Method
Likelihood Method PID Power

PID efficiency for \(\pi \) as \(\pi \)

PID efficiency for \(K \) as \(K \)

\[
\frac{K}{\pi} \text{ 3.3}\sigma \text{ separation up to 2.0GeV/c}
\]

\[
\frac{K}{p} \text{ 3.3}\sigma \text{ separation up to 2.0GeV/c}
\]
Low Momentum μ/π Separation

π efficiency

μ efficiency

$>90\%$ pid efficiency for momentum range (0.3GeV/c~0.5GeV/c) and polar angle (0°~40°)
Classification using CNN

Using CNN to classify three hadrons.

PID efficiency ~ similar level of likelihood method.

Highly accelerate the execution time to 2evt/ms (1 2080Ti).
Develop the RICH Prototype

- Effective area: 16X16 cm²
- Quartz as radiator (10mm) will be replaced by C6F14
- THGEM+CsI (700nm)
- Anode pad(5mm²)
- AGET FEE: 1024 channels
RICH prototype beam-test @DESY

a) RICH prototype

b) RICH in position

c) Test-beam
Spatial resolution

Trigger:
S1 & S2

T06 is getting worse due to the e-scattering
• Summary

- STCF PID requires 2GeV/c π/K separation, and RICH can satisfy this requirement.
- Via the Likelihood method, $>3\sigma$ separation capability can be reached by RICH in STCF, and can offer π/μ PID in low momentum range.
- Test-beam @DESY shows the current base-line design is functional and can fulfill the requirements. Preliminary results are presented.

Thank you !!
• backup
counting rate extrapolated from BESIII

- Barrel: 400 Hz/cm²
- Endcaps: 4kHz/cm²
- May include significant contributions from detector/electronics noise since no clear dependence on beam current is seen