A High Efficiency Cosmic Ray Veto Detector for the Mu2e Experiment at Fermilab

and a Search for Hidden Chambers in the Great Pyramid

International Conference on Technology and Instrumentation in Particle Physics 2021

E. Craig Dukes
University of Virginia

May 25, 2021
The Holy Grail of Particle Physics: What Lies Beyond the Standard Model
Probes for New Physics: $\mu + N \rightarrow e + N$ Outstanding

Different SUSY and non-SUSY BSM models

<table>
<thead>
<tr>
<th>Observable</th>
<th>AC</th>
<th>RVV2</th>
<th>AKM</th>
<th>δLL</th>
<th>FBMSSM</th>
<th>LHT</th>
<th>RS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 - \bar{D}^0$</td>
<td>★★★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>ϵ_K</td>
<td>★</td>
<td>★★★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>$S_{\psi\psi}$</td>
<td>★★★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>$S_{\phi\kappa}$</td>
<td>★★★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>$A_{CP}(B \rightarrow X_s\gamma)$</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>$A_{7,8}(B \rightarrow K^*\mu^+\mu^-)$</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>$A_{9}(B \rightarrow K^*\mu^+\mu^-)$</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>$B \rightarrow K^*(\nu\bar{\nu})$</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>$B_s \rightarrow \mu^+\mu^-$</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>$K^+ \rightarrow \pi^+\nu\bar{\nu}$</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>$K_L \rightarrow \pi^0\nu\bar{\nu}$</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>$\mu \rightarrow e\nu\bar{\nu}$</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
<tr>
<td>$\tau \rightarrow \mu\nu\bar{\nu}$</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
<td>★</td>
</tr>
</tbody>
</table>

Altmannshofer et al., NPB 830, 17 (2010)

Table 8: “DNA” of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models ★★★ signals large effects, ★★ visible but small effects and ★ implies that the given model does not predict sizable effects in that observable.

Muons can be produced copiously, conversion electrons are distinctive, BSM effects are large.

- ★★★★★ Large effects
- ★★★ Visible, but small
- ★ No sizable effect
Pushing the Limits: Where we are Now

- $\mu N \rightarrow eN$
- $\mu \rightarrow e\gamma$
- $\mu \rightarrow eee$

![Graph showing branching fraction upper limit vs year for different experiments like TRIUMF, MEGA, MEG, SINDRUM, SINDRUM II.](image-url)
Pushing the Limits: Where we Plan to be

- $\mu N \rightarrow eN$
- $\mu \rightarrow e\gamma$
- $\mu \rightarrow eee$

Branching Fraction Upper Limit vs Year

- TRIUMF
- MEGA
- MEG
- MEG-II
- SINDRUM
- SINDRUM II
- DeeMe
- COMET
- Mu2e
- Mu3e
Probing new physics through lepton flavor violation through muon-to-electron conversion using a novel detector design

Signal: delayed emission of a single \sim105 MeV electron in an Aluminum stopping target

$\mu^- N \rightarrow e^- N'$
Two biggest backgrounds are Muon decay-in-orbit and cosmic-ray induced electrons.
Mu2e Experiment: Cosmic Ray Veto

- CRV identifies cosmic ray muons that produce conversion-like backgrounds.
- Design driven by need for excellent efficiency, large area, small gaps, high neutron and gamma rates, access to electronics, and constrained space.
- Technology: Four layers of extruded polystyrene scintillator counters with embedded wavelength shifting fibers, read out with SiPM photodetectors.
- Track stub in 3/4 layers, localized in time/space produces a veto in offline analysis.
- **Overall efficiency of 99.99% is needed to keep the background to less than 1 evt**
Mechanical Design: Counter

• Fundamental element of the CRV (5,344 total)
• Counters are extruded at the Fermilab NICADD facility
• Each counter has two 1.4/1.8 mm wavelength-shifting fibers placed in channels in extruded PS doped with 1% PPO + 0.05% POPOP and coated with with TiO$_2$
• All counters, except a handful where the radiation doses are too high, or if they are too short, are read out on both ends by silicon photomultipliers (SiPMs)
• Counters range from 1045 mm to 6900 mm long
• Counter profile: 51.3 x 19.8 mm2
Mechanical Design: Di-counter Manifold

• Counters grouped in pairs to form a di-counter
• Each di-counter end served by a single counter motherboard with 4 2x2 mm² SiPMs, 2 flasher LEDs, 1 thermometer
• Designed to minimize pressure damage to SiPMs, eliminate light leaks, facilitate SiPM-fiber registration, provide easy removal/installation, and have a low profile
• Opaque counter motherboard forms manifold top; SiPM mounting block of anodized aluminum
• Pogopins connect counter motherboard and SiPM carrier boards
• SiPM temp not controlled, but bias adjusted based on temperature
• HDMI header can have vertical and horizontal orientation
Mechanical Design: Di-counter Manifold

- HDMI Header
- Opaque FR4
- "Pogo" pins
- 405 nm LED
- 2x2 mm SiPM
- Counter Mother Board
- SiPM Carrier Board (SCB)
- SiPM Mounting Block (SMB)
Mechanical Design: Modules

• Fundamental mechanical element of the CRV
• 4 layers of counters with 3 layers of Al absorbers sandwiched between them: 16 counters (8 di-counters) /layer
• Layers are offset to avoid projective gaps between counters
• Total: 83; of 10 different types
• Mechanical tolerances very tight and critical
• Weight: 179 kg - 1165 kg.
• Lengths range from 1.0 m – 6.9 m
We chose this photodetector type because:

• Good effective quantum efficiency
• Ability to measure absolute light yield
• Small size: facilitates on detector mounting
• Works in high magnetic fields
• Low cost: $9.56/ch mounted on carrier board

Hamamatsu MPPC S13360-2050VE

All values at 25° C at overvoltage of 2.5V:
1) 2mm x 2mm, 50 μm pixel
2) Surface-mount, TSV packaging
3) PDE > 35% (530 nm)
4) Gain ≥ 1.0x10^6
5) Pulse rise time < 5 nsec
6) Dark rate < 250 kHz @ 0.5 PE threshold
7) X-talk (inter-pixel) < 2%
8) Bias spread: ±0.5V (within batch); ±1.5V (all)
9) Temperature dependence ≤ 50 mV/°C
SiPM Delivery and Testing

SiPMs are mounted on small 8.4 x 4.9 mm2 “SiPM carrier boards” (SCBs). They are delivered and tested on “waffle” pack boards, each with $4 \times 4 = 16$ SCBs. Punched out of the waffle pack when needed.

SiPM side of “waffle pack”

Pogopin pad side of “waffle pack”
Electronics: Block Diagram

Four components: (1) Mounted SiPMs (SCB w SiPM: 19,456, $9.56 ea), (2) Counter Motherboards (CMB: 4864, $32.71 ea), (3) Front-end Boards (FEB: 316, $1750 ea), (4) Readout Controllers (ROC: 16, $2000 ea)

All commercial-off-the-shelf parts (80 MHz ultrasound octal amp/ADC)

Dynamic range: 2000
Max rate/SiPM: 1 MHz
Max rate FEB-ROC: 10 MB/s
Max rate ROC-DTC: 250 MB/s
Time resolution: ~ 2 ns
Magnetic field: ~ 0.1 T
Max dose: 10^{10} n/cm2
Front End Board: Amplifier, Digitizer, Shaper

• Serves 64 SiPMs
• Takes SiPM signals from 16 CMBs over HDMI cables
• Individual bias for all 64 SiPMs
• Amplifies, shapes, digitizes in amplitude and time, zero-suppresses, and buffers signals
• Power provided by Ethernet
• Can be read out (& powered) locally or through a readout controller

The core of the readout is a commercial ultrasound chip

TI AFE5807: Eight channels of low noise preamp, variable gain amp, programmable gain amp, programmable low pass filter, 80msps 12 bit ADC. $7 per channel, 120mW per channel. Adjust gain such that 1p.e. = 10 ADC counts.
Readout Controller

- Powers entire system
- Serves up to 24 FEBs (PoE)
- Interface to the DAQ computer
Electronics: Features

- All COTs parts: system can be reproduced inexpensively by others
- PoE from ROC to FEB eliminates need for any power supplies (other than 110V wall power)
- Histogramming firmware in FPGA allows fast dark-noise spectra to be obtained within seconds to calibrate the PE spectrum
- In-situ IV curves can be taken (100 pA precision, 1 mA max) that rivals commercial test equipment
Performance

Light yield from 120 GeV protons normally incident 1 m from readout end
- ~53 PE/SiPM
- 1.4 mm fibers

Reconstructed position using TOF from readout on both ends of a counter
- $\sigma = 15$ cm
- 1.4 mm fibers
Simulation Code

- A huge effort has gone into developing a detailed, fast, soup-to-nuts MC with a complete simulation of the counter response to incident particles.
- MC includes timing jitter, SiPM crosstalk, and afterpulsing, Front-end Board digitization, etc.
- MC has been extensively tuned to agree with test-beam data.

Response to 120 GeV protons along a 3-m long counter

Transverse response to 120 GeV protons for a 3-mm wide counter. Only data from left fiber used.
Other Experiments Exploring Similar Systems

Light Dark Matter eXperiment (LDMX) hadronic calorimeter
- quadcounter with 1 fiber/50-mm wide extrusion rather than di-counter

Exploring the Great Pyramid Experiment (EGP)
- Quadcounter with 1 fiber/extrusion rather than di-counter
- Better resolution needed: triangular counter: 40 x 20 mm² (base x height) gives ~1 mm

Exploring the Temple of Kukulcan at Chichen Itza
- Same design as EGP

Mu2e-II
- Exploring using same design as EGP

DUNE
- Exploring similar design for Near Detector
Summary

• We have developed a complete detector system based on scintillator counters with embedded wavelength-shifting fibers read out by SiPMs
• The detector is simple to fabricate using modest resources and is inexpensive
• A fast, inexpensive readout system using all COTS parts and that needs only wall power has been designed: it can be reproduced with ease
• The design is flexible and is being used or considered for multiple experiments

Many thanks to my colleagues on Mu2e