

Single Event Effects Testing of the RD53B chip

Mohsine MENOUNI CPPM - Aix-Marseille Univ, France

On behalf of the RD53 collaboration

TIPP 2021

The fifth Technology and Instrumentation in Particle Physics conference May 24-28 - 2021

- Introduction : RD53 collaboration
- SEU mitigation strategy in the RD53B chip
- RD53B Heavy lons Testing
- RD53B Proton Testing
- Results analysis
- Summary and Conclusion

Introduction : RD53 collaboration

24 collaborating institutes

See Flavio Loddo talk in this conference: RD53 pixel chips for the ATLAS and CMS Phase-2 upgrades at HL-LHC https://indico.cern.ch/event/981823/contributions/4295328/

- Design and develop pixel chips for ATLAS/CMS phase 2 upgrades
- Extremely challenging requirements for HL-LHC
 - Small pixels: $50 \times 50 \ \mu m^2$
 - Large chips : ~2cm × 2cm
 - Hit rates: up to 3 GHz/cm²
 - Data readout : up to 5.12 Gbps per FE chip
 - Radiation : 500 Mrad and 10¹⁶ 1MeV neq/cm² over 5 years
 - Serial powering
- Baseline technology : 65nm CMOS
- RD53A : Large scale demonstrator
 - Tested in an intense way
- RD53B chip :
 - ATLAS chip (ITkPixV1) submitted March 2020 and received June 2020
 - High digital current because of an issue in the ToT latches
 - All the tested functionalities are working as expected
 - The issue was solved by a patch in metal layers : ITkPixV1.1
 - CMS chip (CROC) will be submitted soon

- The test results presented were obtained from the ITkPixV1 chip
- A strict procedure was followed to keep the current at an acceptable level (< 3A)
- Voltage, current and temperature were monitored during all the tests

SEU mitigation in the RD53B chip

- Single Event Effects (SEE) are a major challenge for the RD53B chip design:
 - Should work reliably in an extremely hostile radiation environment
- Single Event Upset (SEU), Single Event Transient (SET), Single event latch-up (SEL)
- Triple Modular Redundancy (TMR) associated to the SET mitigation with clock spread is used in the Digital Chip Bottom to reduce the SEU rate in the RD53B
 - Area and power consumption increase
 - Not compatible with the required small pixel size and the power dissipation constraints
- Mitigation of SEU concerns only the critical parts as the configuration memories, state machines, FiFo pointers ...
- Data Paths are not protected
- 50% of the DFFs in the chip bottom are protected
- All the reset signals are synchronous (avoid a global glitch effects)
- TMR is implemented during synthesis
 - Simple FF replacement with TMR version
 - TMR flip-flops are constrained to be placed with 15 μm distance

Cells Spacing in the same TMR latch

27 May 2021

SEU mitigation in the RD53B chip

Chip Configuration

- Pixel configuration
 - Memory size : 8 bits per pixel -> 1.28 Mbit per FE chip
 - Unprotected latch (single latch) used for 2 bits
 - TMR latch without error correction implemented for 6 bits
 - The small pixel area does not allow to implement the auto correction
- Global configuration
 - Memory size : 1.6 Kbit
 - Located in the Digital Chip Bottom
 - TMR with clock skew and error correction
- The configuration registers (global and pixel) do not have a reset
 - A re-configuration step is necessary to put them in a right state

TMR with correction

- TMR with clock skew
- **ΔT is set to 200 ps**
- Filter SET glitches shorter than 200 ps
- Implementation Challenges :
 - Triplicated clock skews made by clock tree synthesis
 - Timing closure (hold time)
 - Delay variation with process, power supply, temperature and TID

RD53 Heavy Ion Test Results

Heavy Ions SEU Tests

- Centre de Ressources du Cyclotron (CRC) Louvain la Neuve , Belgium : https://uclouvain.be/en/research-institutes/irmp/crc
- Two SEU test beam campaigns: October 8, 2020 and November 17, 2020
- Test Setup based on the BDAQ test set-up developed by Bonn Univ.
- The chip irradiated in vacuum
 - the chip was mounted on an Aluminum plate for cooling
- The beam size is 2.5 cm and adjusted to irradiate the whole chip
- Main tests performed during the 2 campaigns:
 - Digital scan loop and Scan loop without injection
 - Test of global and pixel configuration registers

Wafer ID: 102 - Chip ID: 3A DNW used for Analog and Digital Chip ID: 0x12286 DNW used only for Digital

- Current increase is due to issue in ToT memories in the ITkPixV1 chip
 - Effect of SEU on the ToT memories
 - The current depends on the LET and on the fluency
- Routines to decrease the current applied after each test
- The current was monitored during the entire test and no SEL effect was observed

	DUT Energy	Range on device	LET	
lon	[MeV]	[µm Si]	[MeV cm ² / mg]	
13C4+	131	269.3	1.3	
22Ne7+	238	202	3.3	
27Al8+	250	131.2	5.7	
36Ar11+	353	114.0	9.9	
53Cr16+	505	114.0	16.1	
58Ni18+	582	105.5	20.4	
84Kr25+	769	94.2	32.4	
103Rh31+	957	87.3	46.1	
124Xe35+	995	73.1	62.5	

27 May 2021

Digital scan

- Standard procedure of digital scan:
 - 100 digital injections per pixel
- For the digital scan test, Individual pixels can show bigger/lower amount of hits
- This concern clusters of 4 pixels
 - It is due to SEU in the digital part of the pixel
 - This is explained by the digital architecture organized by regions of 4 pixels
 - Fired pixels in the same cluster varies between 1 and 4
 - SET or SEU on the common logic to these 4 pixels results as if 1,2,3 or 4 pixels were touched at the same time

(Injection and readout is always done separately in pixels border with blue and read)

- Tests were done with:
 - PLL mode : serializer and command clocks are provided by on-chip CDR
 - Bypass mode : both clocks are provided externally
- In PLL mode, synchronization issues with the BDAQ readout system have been identified
 - Map where missing hits are not random
- SEU tests of the CDR/PLL block of the RD53B chip are in progress

Pixel configuration tests

SEU error(s)

- Memory size : 8 bits per pixel -> 1.28 Mbit per FE chip
 - TMR without error correction implemented for 6 bits
 - Unprotected latch used for 2 bits
- The SEU errors are randomly distributed -> No global signal effects
- Unprotected latch :
 - Saturation cross section : $\sigma_{SAT} = 6.0 \times 10^{-8} \text{ cm}^2$
 - Threshold LET LET_{th} < 1 MeV.cm²/mg
- TMR latch (no correction)
 - For a particle fluence of 2.0 × 10⁵ p/cm², the saturation cross section is improved by a factor 10
 - The TMR w/o correction is very efficient for mitigation for low error rate
 - The cross section increases with fluence because of errors accumulation
- TMR without correction is useful to reduce the rate of configuration when considering a regular external reconfiguration

Global configuration test results

- The RD53B chip contains 209 global registers : ~3 Kbit in total where a half is reserved only for tests
 - TMR with correction
- A high ion fluence required for this test, especially for the low LET
 - More than 10⁷ p/cm² -> require an exposition time of 1 hour
 - Only a few errors were observed for the low LET (5 errors for Aluminum)
 - The measurement bar error is still high
- TMR with correction
 - Saturation cross section : $\sigma_{SAT} = 9.0 \times 10^{-10} \text{ cm}^2$
 - Threshold LET : LET_{th} < 1 MeV.cm²/mg
- A ratio σ_{SL}/σ_{GR_TMR} of 100 is expected from the proton cross section calculation
- A significant effect of self-correction was observed by testing the SEU effects with and without clock

	Single latch	Global Register
	cross section (cm²)	cross section (cm²)
calculation for 200 MeV proton	8.6 × 10 ⁻¹⁵	7.9 × 10 ⁻¹⁷
based on heavy ion testing		

M. Huhtinen, F. Faccio : Computational method to estimate Single Event Upset rates in an accelerator environment

Proton Testing

480 MeV proton SEU Tests

- SEU tests done remotely the December 19-20 2020 with
 480 MeV protons in TRIUMF facility
- One set up based on BDAQ was installed -> 1 chip tested
- The whole test set-up installed in the beam area
 - BDAQ board
 - 2 meter of DP cables for connection from BDAQ-SCC board
 - Power supplies controlled by the laptop (control room)
- Laptop controlling the set-up placed in control room, connected to the global network and reached from CERN and from Marseille
- The chip tested under a proton flux of 1.5 10⁹ p/cm²/s
- The chip powered in LDO mode to ensure good biasing of the chip
 - V_{DDD} and V_{DDA} voltage values monitored trough the on chip ADC
 - The on chip temperature monitored with the internal temperature sensors
- V_{IND} and V_{INA} powered by 2 different power supplies (2 V – 3A)

Thanks to Luise Poely (TRIUMF) for the installation of the setup and the assistance during tests

Pixel configuration test results

- Memory size : 8 bits per pixel -> 1.28 Mbit per FE chip
 - TMR without correction used for 6 bits
 - Unprotected latch used for 2 bits
- Several pixel configuration runs
 - The flux set to the maximum : 1.5 × 10⁹ p/cm²/s
 - $5.4 \times 10^{10} \text{ p/cm}^2 \text{ to } 4.3 \times 10^{12} \text{ p/cm}^2$
- Unprotected latch cross section $\sigma_{SL} = 1.5 \times 10^{-14} \text{ cm}^2$
- TMR latch cross section increases with the fluence because of errors accumulation
 - The TMR is 100 times tolerant than the unprotected latch for low proton fluence $(^{5} \times 10^{10} \text{ p/cm}^{2})$,
 - TMR is only 10 times tolerant than the unprotected latch for moderate proton fluence (~1.0 × 10¹² p/cm²)
- TMR without correction is useful when considering a regular external re-configuration
 - It helps to reduce the external re-configuration rate

Pixel configuration results

- HL-LHC environment : SEE flux (Hadrons > 20 MeV) of 1.0 × 10⁹ p/cm²/s is assumed for the innermost layer
- The pixel TMR tolerance depends on the fluence received by the FE chip during the time interval expected between
 2 successive configuration loading from the DAQ system
- If we assume that each FE chip is re-configured every 50 sec
 - The cross section for unprotected latch is 1.5×10^{-14} cm²
 - The cross section for protected TMR latch = $1.5 \ 10^{-16} \ cm^2$
- If we assume that the FE chip is re-configured every 1000 sec
 - The cross section for unprotected latch is $1.5 \times 10^{-14} \text{ cm}^2$
 - The cross section for protected TMR latch = 1.5×10^{-15} cm²

- \rightarrow Number of bit flips = 7.5 × 10⁻⁴ (230/307200)
- \rightarrow Number of bit flips = 7.5 × 10⁻⁶ (6.9/921600)
- \rightarrow Number of bit flips = 1.5×10^{-2} (4600/307200)
- \rightarrow Number of bit flips = 1.5×10^{-3} (1382/921600)

Layer	Location	R (cm)	Z (cm)	SEE Fluence (cm ⁻²) Hadrons> 20 MeV	SEE Flux (cm ⁻² .s ⁻¹) Hadrons> 20 MeV	Unprotected	Config. Time interval 50 sec		Config. Time interval 1000 sec	
						latch	Unpr. latch	TMR latch	Unpr. latch	TMR latch
0	L0 rings	3.6	114	3.26×10^{16}	1.0 × 10 ⁹	4.6 SEU/sec	230 flip/FE	7 flip/FE	4600 flip/FE	1400 flip/FE
2	L2 rings	15.6	286	2.66 × 10 ¹⁵	$0.82 imes 10^8$	0.38 SEU/sec	19 flip/FE	0.075 flip/FE	380 flip/FE	15 flip/FE
4	Outer Endcap	274.6	286	$1.14 imes 10^{15}$	0.35 × 10 ⁸	0.16 SEU/sec	8 flip/FE	0.013 flip/FE	160 flip/FE	2.6 flip/FE
	Lindcap									

TMR latch wo correction Conf. Time Interval \times 20 \rightarrow Error rate \times 200

Global configuration results

- Long duration global register run
 - Duration : 10h30 , Total fluency : 7.2 × 10¹³ p/cm²
 - SEU number : 8
- Slow increase of V_{IND} from 1.7 V to 2 V
- The internal V_{DDD} decrease limited to 8% (1.2 V to 1.1V)
- The run Stopped because of a power supply issue
 - Supply was placed inside the beam area
- The TMR with correction show a gain of ~ 400 regarding the unprotected latch
- Global Registers seem to be very tolerant to SEU
- Results are compatible with what expected from heavy ion testing

	Unprotected latch	Global Register	
	cross section	cross section	
	(cm²)	(cm²)	
calculation for 200 MeV proton based on heavy ion testing	8.6×10 ⁻¹⁵	7.9×10 ⁻¹⁷	
Experimental value 480 MeV proton test	1.5×10 ⁻¹⁴	3.6 ×10 ⁻¹⁷	

Layer	Location	R (cm)	Z(cm)	SEE-Fluence (cm ⁻²) Hadrons> 20 MeV	SEE-Flux (cm ⁻² .s ⁻¹) Hadrons> 20 MeV	Pixel configuration Unprotected latch	Global Configuration Mean time between errors (per FE chip)
0	L0 rings	3.6	114	3.26×10^{16}	1.0 × 10 ⁹	4.6 SEU/sec	5 hours
2	L2 rings	15.6	286	$2.66 imes 10^{15}$	$0.82 imes 10^8$	0.38 SEU/sec	58 hours
4	Outer Endcap	274.6	286	1.14 × 10 ¹⁵	0.35 × 10 ⁸	0.16 SEU/sec	138 hours

Summary and Conclusion

- RD53B chip exposed to a high LET ions and 480 MeV proton beam for SEU qualification
 - 2 chips tested with heavy ions and 1 tested with protons
- The results obtained with protons are in agreement with those obtained with heavy ions
- The chip is working correctly without need of resetting or power cycling
 - No issue observed with the state machines and critical paths
 - No latch-up and no chip-stuck observed during the whole SEU tests
- Configuration
 - The cross section of the unprotected latch is 1.5×10^{-14} cm²/bit
 - The TMR latch without correction allows a gain of 10 to 100 depending on the configuration rate
 - The TMR latch with correction is 400 times tolerant than the unprotected one
- BDAQ software and firmware modifications needed to avoid the communication issue in PLL mode
- More samples should be tested for more statistics
- Tests in a real working conditions
 - Test for high trigger rate
 - Test for high hit rate
 - Test of the communication and the effect of the CDR/PLL SEU on the whole chip
- Further SEU test campaigns are scheduled for the end of the year

Thank you for your attention Thank you for your attention

Fluence of Hadrons > 20 MeV (4000 fb-1)

SET Analysis

- SET test structures implemented in the chip
 - Measurement of pulse width > 70 ps with a resolution of 30 ps
- NOR gate: SET pulse width : **70 ps < PW < 220 ps**
- RD53B chip
 - The structure using temporal mitigation is implemented in RD53B
 - This work helped to set the optimal value for the delay

Global Register Results

- 2 order of magnitude more tolerant than the standard DFF
- The proton cross section estimated to 2-5 10⁻¹⁶ cm²
- Needs to be confirmed in proton facility

27 May 2020

Config Register

Pixel Configuration

Bits	Name	Description		
[0]	Enable	Include the pixel in the DAQ data path		
[1]	Cal Enable	Turn on charge injection (*)		
[2]	HitOr Enable	Add the pixel to its wired OR core col. hit line		
[3:6]	TDAC value	Value for in-pixel theshold trim DAC		
[7]	TDAC sign	Selects differential branch set to TDAC value		

Beam position

- The beam diameter is 25 mm
- The entire **Digital Chip Bottom** part must be covered by the beam