Readout Design Concept for Light Detection in Noble Liquid TPCs using Large Capacitance SiPMs

- S. Rescia, A. Bolotnikov, G. A. Carini, H. Chen, M. Chiu, M. Dabrowski, G.W. Deptuch,
- S. Gao, G. Giacomini, S. Miryala, D. Moore, V. Radeka, E. Raguzin, T. Tsang, M. Worcester

25 May 2021

Outline

- The need for large area SiPM light detectors:
 - nEXO SiPM area ~4.6 m^2; DUNE ~ tens of m^2
- There is a large mismatch between the "giant" SiPM capacitance C_d (many nanofards) and a tiny input transistor gate capacitance C_q (a few picofarads).
- Conventional approach: Transfer all the SiPM avalanche charge onto an ("current") amplifier not optimal for $C_d/C_q>>1$
- A <u>different approach</u>: Transfer only a charge that we can "naturally see", due to sharing among the capacitances, onto the input transistor gate.
- Advantages: instead of a "giant" (de)coupling capacitor to close the signal circuit, a much smaller capacitor is sufficient; lower power dissipation; SiPM and electronic gain calibration.
- Single and multiple photoelectron response, S/N and timing resolution are demonstrated for 20 nF (6 cm^2) SiPM subarrays operated at low temperature (LN2).

"Giant" SiPM Capacitance

Technology		"HPK"	"FBK"
C/A [nF/cm^2]		3.5	8.5
V_{op}	[V]	60	30
C_{6cm}^2	[nF]	21	51
C _{2s}	[nF]	5	12.5
V_{2s}	[V]	120	60

- Number of readout channels in nEXO $\sim 8000 \times 6 \text{cm}^2$ for a SIPM area of $\sim 4.8 \text{ m}^2$

Why "Giant"?

SiPM capacitance C_d (in any practical arrangement) is much higher than in any known detector

- C_d is large, but so is the charge/pe, $Q_s \sim 0.4 \text{ pC} (2.4 \times 10^6 \text{ e}^-)$
- The charge is bound to that giant capacitance: can we "see" it??
- How to "extract" the charge while applying the bias to SiPMs?
- Does C_b, the decoupling (radio pure)
 HV capacitor have also to be "giant"?

SiPM – transistor capacitance mismatch - how much of the avalanche signal charge do we really "see"?

"useful" charge: Q_g modulates the channel and with transistor noise determines S/N

Example:

 C_d =10 nF C_g =25pF (very large transistor) $(Q_o/Q_s)=(Cg/Cd)=1/400$

We "see" only **1/400** of the SiPM avalanche charge.

A long way to an ideal capacitance match:

$$(Q_g/Q_s)_{max} = \frac{1}{2}$$

for
$$(C_q/C_d)=1$$

Should we think of something different?

$$\left(\frac{S}{N}\right)_n = \frac{Q_{in}/C_d}{e_{sn}/t_p^{1/2}} \cdot \frac{n}{1 + C_g/C_b + n^2 C_g/C_d}$$

n= series connection (slide 7, n=2)

$$\frac{Q_g}{Q_{in}} = \frac{C_g}{C_d} \cdot \frac{1}{1 + \frac{C_g}{C_b} + \frac{C_g}{C_d}} \qquad \text{The } \mathbf{C}_g, \mathbf{C}_g$$

$$\frac{v_{out}}{Q_{in}} = \frac{1}{C_f} \cdot \frac{1}{1 + \frac{C_d}{C_h}}$$

$$for \frac{C_d}{C_b} \gg 1 \rightarrow \frac{v_{out}}{Q_{in}} \approx \frac{1}{C_f} \times \frac{C_b}{C_d}$$

Do we need *feedback*? Not needed but useful; it defines the gain (charge sensitivity) and the response.

Feedback cannot improve S/N (it "feeds" back both signal and noise). With feedback this is just a classical Charge Sensitive Amplifier.

The result: C_b has to be larger than C_q , but can be much smaller than C_d :

Toward matching ...

$$ENC = \frac{e_n}{\tau^{1/2}} \left(\frac{C_d}{n} + nC_{gs} \right) \qquad n_{opt} = \left(\frac{C_d}{C_{gs}} \right)^{1/2} \qquad ENC_{sopt} = 2 \frac{e_n \left(C_d C_{gs} \right)^{1/2}}{\tau_p^{1/2}}$$

n= transformation ratio for EM and ES transformers = (number of transistors in parallel) $^{1/2}$

EM transformer, the best and proven, but not radio pure

Electrostatic transfomer

For C_d=10000 pf:

$$C_g = 25pF \rightarrow n_{opt} = \sqrt{\frac{C_d}{C_g}} \cong 20$$

ENC is reduced by:
$$\frac{1}{2} \sqrt{\frac{C_d}{C_g}} = 10$$

ES transformer n=4 will improve S/N by a factor of ~ 3.95; n=2 by a factor of ~2, compared to parallel connection of SiPMs.

It would take **16(4)** times as many transistors *and power* for the same result as with ES transformer

SiPM Readout: Interposer and Electronics Daughterboard

Two-ASICs approach

LArASIC = Antialiasing Filter

For a very large low noise PMOS

The transistor can never match a

transistor W~20mm, L~270nm,

W/L~4x10^4, C_g~20pF;

capacitance.

nanofarad SiPM; This very large transistor is a small fraction (~1/400) of the SiPM

160μm x 100μm=16,000μm²

SiPM Minitile (6 cm²): Charge Histogram, LN₂

Photon rate: ~ 80 Hz (trigger rate 100 Hz) 1-pe resolution (δE): 3 to 3.5% rms

DCR: $\sim 96 \text{ Hz} \quad (0.17 \text{ Hz/mm}^2)$ 1-pe resolution (δE): $\sim 5\% \text{ rms}$

Waveform reconstruction and single-photon timing resolution (SPTR)

Using sinc-interpolation + 'digital' constant fraction discriminator, leads to a low timing error (SPTR)

Summary

- In a conventional approach using a "current amplifier", or any other, both the signal and series noise are affected equally by amplifier feedback, and S/N ratio remains unaffected by feedback.
- With large SiPM capacitance grossly mismatched to even the largest input transistor, transfer of charge from SiPM via a large (de)coupling capacitor ($C_b > C_d$, i.e., strong coupling) does not contribute to S/N.
- Due to a large mismatch, a weak coupling between the SiPM and the input transistor is sufficient, where $C_d > C_b > > C_g$. Most appropriate configuration for realization of this concept is a charge sensitive amplifier (CSA), coupled to SiPMs by a decoupling capacitor an order of magnitude smaller than SiPM capacitance ($C_b \sim 200-500$ pF for 5-10 nF SiPM subarray)
- The LAr FE ASIC for MicroBooNE, protoDUNE and SBND ("LArASIC"), has the required characteristics, and it has made possible experimental verification of the noise calculation. SiPM response, S/N, and timing resolution have been demonstrated.

SiPM Readout by "Current Feedback Amplifier"?

- A large (de)coupling capacitor C_b is required.
- There are additional noise sources in the "Current Feedback Amplifier" besides the input transistor