2D charge sharing readout planes for GEM, μRWELL and other detector applications

A. Kiselev¹, S. Aune², B. Azmoun¹, M. Chiu¹, K. Dehmelt³, A. Deshpande³, W. Fan⁴, P. Garg³, T. Hemmick³, M. Kebbiri², I. Mandjavidze², B. Mehl⁵, R. De Oliveira⁵, C. Perez Lara⁶, M.L. Purschke¹, M. Revolle², M. Vandenbroucke², S. Williams⁵, C. Woody¹

¹Brookhaven National Laboratory (USA), ²CEA Saclay (France), ³Stony Brook University (USA), ⁴Lawrence Berkeley National Laboratory (USA), ⁵CERN (Switzerland), ⁶University of Virginia (USA)

International Conference on Technology and Instrumentation in Particle Physics Vancouver Canada, May 24-28, 2021 (via Zoom)

Outline

- 1D zigzag success story overview
- A concept of 1D -> 2D zigzag evolution
- Test stand measurements with the GEM prototype implementation
- Other detector options
- Summary & Outlook

Charge sharing in MPGDs with 1D zigzag electrodes

At a large enough pitch, the straight strips exhibit lack of sensitivity to the primary charge cloud position

- The solution is using charge-sharing zigzag strips
- Large pitch possible (small channel count) without much of a loss in spatial resolution
- Low differential nonlinearity

GEM zigzag example: 2 mm pitch & ~50 μ m resolution

A concept of 1D -> 2D zigzag evolution

The prototype readout board

- Built at CERN
- 100 x 100 mm² active area
- Kapton, two-layer design
 - Patterns in the top layer, ~50 μm spacings
 - Interconnect in the bottom layer, with the chemically etched blind metallized vias
- Multi-pattern design:
 - A full set of "1D zigzag -> diamond (aka 2D zigzag)" evolution patterns
 - A variety of 1.0 mm pitch 2D zigzags at various UV-slopes
 - 1.0 mm pitch "self-analyzing" patterns
 - "COMPASS" 400 μm pitch reference pattern
 - 1.5 mm pitch 2D zigzag at +/-45°

Test setup

- Quadruple GEM chamber
 - \circ Ar(70)/CO₂(30)
 - Gain ~5000
- DREAM readout electronics

Drift	3.0 mm	500 V/cm
Amplification		dV ~ 325 V
Transfer	1.6 mm	3.0 kV/cm
Induction	1.6 mm	3.0 kV/cm

Either 55 Fe or X-ray gun (Cu target, 8.04 keV K $_{\alpha}$ line) as a primary ionization source

1D pseudo-zigzag self-analyzing patterns with the ⁵⁵Fe source

Amplitude measurements

- 1.0 mm pitch
- A single "diamond band" is 250 μm wide
- Effectively is just a zigzag cut into narrow slices and split between the two independent sets of eight odd & eight even strips (U & V) ...
- ... and measure the same
 X-coordinate by a pair of
 400 μm pitch "planes"
- layout, both planes are identical per design and sample the same charge with a measured amplitude difference <2%

~ 8 x 10 mm² spot flooded by uncollimated ⁵⁵Fe source

Position measurements

Even strips: U-plane; odd strips: V-plane 8 mm

- The pattern is identical to the previous slide, but here the U&V pseudo-planes are staggered by half a pitch (namely by 500 μm)
- Any intrinsic DNL effects are *maximized* for this pattern

- This 2D plot alone is a good indicator of the position resolution ...
- ... even that there is a ~40 μm DNL remaining

"COMPASS" 400 μ m pitch 1D strips with the collimated to 25 μ m X-ray gun

Residual width as a function of X-ray HV setting

- The expected range of the K_{α} absorption peak electrons is a few hundred microns ...
- ... therefore, need to suppress them by reducing the X-ray tube voltage
- By doing so can bring the residuals down to ~70 μm

Note: apart from the small contribution from the finite 25 μ m collimator size, these ~70 μ m obviously include a quadratic sum of the intrinsic COMPASS pattern resolution (perhaps 35-40 μ m) and the finite range of the lowest energy secondary X-ray electrons

Amplitude spectra and residual distributions

• Also, worth mentioning: the DNL for this 400 μ m pitch is small (<10 μ m), as expected

2D zigzag pattern with the collimated to 25 μm X-ray gun

Strip configuration and measured non-linearity

- Stagger the "diamond" segments, which is equivalent to rotating the U- & V-planes
- Measure U- and V-coordinates at once
- Residuals from $\sigma \sim 55 \mu m$ to $\sigma \sim 85 \mu m$
- Remaining DNL below ~ 50 μm

Measured residuals and spatial resolution estimates

Horizontal scan data
 Taken from the sin() fit, but can be measured if needed

Measured residual σ _m , [μm]	Estimated dm/dx derivative	Actual resolution σ _x , [μm]
~75	1.05	~71
~58	0.81	~71
~75	1.12	~67
~82	1.21	~68
~64	0.91	~70

- Perfectly gaussian residuals of variable width
- The actual resolution is not equal to σ_m , but to $\sigma_x \sim \sigma_m^* dx/dm \dots$
- ... and (see the last column) is roughly constant ~70 μm across the spot acceptance
- (with a substantial contribution of the X-ray secondary electron range)

Outlook

- Perform beam test measurements at Fermilab with GEM, μRWELL & micromegas prototypes (June 2021)
- Manufacture a small ~100 x 100 mm² GEM detector with a uniform layout (aka EIC 2D readout scheme)
 - 2x 64 channels (X&Y)
 - expected spatial resolution ~50-60 μm
- Demonstrate scalability to ~400 x 400 mm², suitable for EIC applications

A fragment of the 400 x 400 mm² detector gerber file (4x 200 x 200 mm² uniform 2D strip fields)

Perform bench top and beam test measurements with the capacitively coupled MCP-PMTs and LAPPDs (June 2021)

Summary

- A small 2D zigzag charge sharing readout plane prototype was designed, manufactured and benchmarked
- It resembles all the distinguishing features of 1D zigzag, but allows one to measure two (or more) independent coordinates at once:
 - High spatial resolution
 - Low channel count
 - Small differential non-linearity
- Other features of potential interest:
 - Low material budget (if used without a thick PCB substrate)
 - Built-in redundancy (if designed with more than two independent planes at once)
 - 2D pixellation with X&Y-resolution independent of the pixel footprint (if one uses strip segments)
- Beam test measurements are starting this week at Fermilab!