

Calibration and monitoring of a Spherical Proportional Counter

TIPP 2021-05-25

Philippe Gros (Queen's U, Kingston, Canada) for the NEWS-G collaboration

- The NEWS-G Spherical Proportional Counter
- Calibration tools: laser and sources
- Calibration measurements
 - Ionisation yield (W-value)
 - Drift velocity and diffusion
 - Fiducial volume
 - Quenching factor

2021-05-26

- Direct dark matter detection at SNOLAB (Ontario)
- Gaseous detector:
 - light target nuclei (neon, helium, hydrogen)
 - Light WIMP sensitivity (<1GeV)
- 140cm detector built
 - Full scale test at LSM (France) in 2019 with neon and methane
 - Installation nearly complete at SNOLAB (start expected 2021, depending on Covid restrictions)

NEWS-G Spherical Proportional Counter (SPC)

- Grounded sphere with sensor anode
- Low capacitance, high gain
 -> low threshold
- Simple design

-> pure materials, low background

Queen's

- 213nm UV laser
 - Single photon photoelectric from copper or steel surface
 - 10Hz repetition, 0.5mJ/pulse, adjustable: single electron to few keV equivalent (depends on gas and E field)
 - Pulse by pulse monitoring and tagging with photodetector
- Radio active sources
 - ³⁷Ar: 2.9keV, 0.27keV + 0.26keV escape peak. Uniform volume distribution (gas). Not available during physics runs
 - ⁵⁵Fe (5.9keV) external through Al window (R&D prototypes only)
 - Al 1.5keV fluorescence from alpha source (R&D prototypes only)

Laser calibration: single electrons

- Low laser power:
 - mostly 0 or 1 primary electrons
- Trigger on photodetector
 - 0 electron background included
- Fitting Poisson distribution
 - Polya for gain fluctuation
 - Includes contribution of 2 or 3 electrons
 - mean number of electrons μ can be adjusted by with photodetector amplitude cuts

- Single electron response measurement
 - On underground detector
 - Regularly during physics measurement
- Electron recoil measurement from X-ray sources
 - ³⁷Ar (270eV, 2.9keV) on underground detector
 - Al (1.49keV) and ⁵⁵Fe (5.9keV) in smaller lab detectors
- Measurement of W-value in range 0.26 5.9keV
 - Measurement compatible with published values (within 10%) for CH4 gas
 - Extending to all gas mixtures used in NEWS-G

Detector monitoring

- High intensity laser (100s of electrons): low fluctuations
- Tagging from photodetector
- 10Hz during physics run
- Drift velocity measurement
 - t_{sphere}-t_{photodetector}

ti19s007 / 1b Ne / HV = 1630 DRIFT

10

- Very low field at large radius
 - <1V/cm
 - Very sensitive to field created by drifting ions

Space charge effect

- Charges created by alpha events
 - Ions drifts over several seconds
 - Drift velocity increased
- Laser measurement sensitive •
 - Drift velocity
 - Electron extraction efficiency
- Background associated to alpha events
 - Increased rate for few seconds
 - Process unknown (recombination?) •

- Multianode sensor, 2 channels
 - "North" (5 balls), "South" (6 balls)
- Test of fiducial volume
 - ³⁷Ar unifomly distributed
 - Compare North/South ratio to simulation
 - Tests with different voltages
- Possible surface background information
 - bottom of sphere
 - Equator welding

Nuclear recoil quenching factor

- Ionisation yield from nuclear recoil
- Calibration with
 - Monoenergetic neutron beam
 - Ion beam
- Neutron scattering in neon measured down to ~300eVnr
- Proton recoil in methane down to ~1keV

- Dark matter experiments like NEWS-G need continuous calibration and monitoring
- UV laser is a powerful tool
 - Calibration of single electron gain
 - Monitoring of drift field
- Used in physics run at LSM 2019
 - Evidence of space charge effect from high energy (alpha) events
- Experience to improve monitoring scheme at SNOLAB 2021
 - Alternate low intensity (single electron) and high intensity
 - Study space charge from laser

Backup

Calibration and monitoring of a Spherical Proportional Counter Philippe Gros, Queen's U

Pulse Shape Discrimination

Neutron scattering

Likelihood fit

Data

1.3 keV nuclear recoil

the Reactor Material Testing Laboratory at Queen's University.

Queen's University

<number>