CUPID: a next generation bolometric 0νββ decay experiment

Giovanni Benato for the CUORE and the CUPID(s) collaborations

26.05.2021

TIPP 2021

Ονββ decay

ββ decay signature

- Continuum for 2vββ decay
- Peak at $Q_{\beta\beta}$ for $0\nu\beta\beta$ decay \Rightarrow Energy peak is the only necessary and sufficient signature to claim a discovery
- Additional signatures from signal topology, pulse shape discrimination, multiple channel readout, daughter tagging, ...

Ονββ decay rate

$$(T_{1/2}^{0v})^{-1} = G_{0v} \cdot |M_{0v}|^2 \cdot |f|^2 / m_e^2$$

- $T_{1/2}^{0v} = 0v\beta\beta$ decay halflife
- G_{0v}^{r} = phase space (known)
- M_{ov} = nuclear matrix element (NME)
- f = new physics term

The bolometric technique

- Low heat capacity @ T ~ 10 mK
- Excellent energy resolution (~0.2% FWHM)
- Detector agnostic to origin of energy deposition
- Detector response of O(1) sec if readout with e.g. Neutron Transmutation Doped (NTD) Ge sensors

Simplified thermal model

- Crystal heat capacity: C
- Conductivity of coupling to thermal bath: G
- Signal amplitude $\propto \Delta T = E_{dep} / C$
- Decay constant: $\tau = G / C$

Isotope choice for bolometric experiment

- High isotopic abundance
- Enrichment possible at reasonable cost?
- Q_{RR} above end point of β or γ radiation?
- Scintillating crystal available?
- Large scale crystal production possible?

Advantages of bolometric approach

- Detectors and infrastructure are decoupled.
 Same cryogenic infrastructure re-usable with different isotopes and/or crystals
- Perfect for test of discovery or precision measurements

The CUORE experiment

Massachusetts Institute of Technology

The CUORE experiment

CUORE: the Cryogenic Underground Observatory for Rare Events

- 988 TeO₂ crystals with natural Te composition
 → 742 kg total mass, 206 kg ¹³⁰Te mass
- $Q_{gg}^{(130)}$ Te) = 2527.5 keV Above most natural γ background
- Located in <u>Hall A of the Gran Sasso National Lab</u>
- Background goal: 10⁻² counts/keV/kg/yr at Q_{ββ}
- Sensitivity goal on $T_{1/2}^{0v} = 9.10^{25}$ yr with 5 yr of live time

CUORE infrastructure

The coldest cubic meter in the known Universe

- Multistage cryogen-free cryostat
- Cooling systems: fast cooling system, Pulse Tubes (PTs), and Dilution Unit (DU)
- ~15 tons @ < 4 K
- ~ 3 tons @ < 50 mK
- Mechanical vibration isolation
- Active noise cancelling

CUORE (passive) shielding

- Roman Pb shielding in cryostat
- External Pb shielding
- H₃BO₃ panels + polyethylene

CUORE results

2vββ decay analysis

- Exposure: 300.7 kg·yr
- Full background model of γ region
- $T_{1/2}^{2v} = 7.71^{+0.08}_{-0.06} (stat)^{+0.12}_{-0.15} (syst) \cdot 10^{20}$ yr
 - → most precise ¹³⁰Te half life measurement!
- Refined background model in progress

Ovββ decay analysis

- Exposure: 1038.4 kg·yr
- Fit model: linear bkg + $0\nu\beta\beta$ + 60 Co peak
- Sensitivity: $T_{1/2}^{0v} = 2.8 \cdot 10^{25} \text{ yr}$
- $T_{1/2}^{0v} > 2.2 \cdot 10^{25} \text{ yr } @ 90\% \text{ c.i.}$
 - \rightarrow m_{$\beta\beta$} < 90 305 meV (NME dependent)
- **BI:** (1.49±0.04)·10⁻² counts/keV/kg/yr

<u>CUORE, PRL 126 (2021) 17, 171801</u> <u>CUORE, arXiv:2104.06906</u>

CUORE background: lessons learned for CUPID

ROI: background model for sources far from detector

- ~90% of measured background is due to α particles (U/Th close to TeO₂ crystals)
 - $\rightarrow \alpha/\beta$ discrimination would suppress the background by one order of magnitude
- A $Q_{\beta\beta}$ > 2.6 MeV would automatically reduce the remaining non-α background by one order of magnitude
- Muons are the next dominant contribution
 - → Implement active muon veto

Background suppression via Particle IDentification (PID)

- Couple main crystal with secondary bolometer reading the scintillation light
- Exploit different light yield (LY) of α vs β/γ to actively suppress background
- Typical light detector: thin Ge wafer coupled to thermometer (NTD, TES, KID, MMC)

CUPID-0

Experiment structure

- 26 ZnSe crystals (24 enriched at 95% in ⁸²Se)
- Light detectors: Ge wafer + NTDs
- Crystals + LDs encapsulated in copper + reflector foil
- 5 towers, located in old Cuoricino cryostat at LNGS
- Total Phase-I exposure: 9.95 kg·yr
- α rejection through pulse shape of light signal

CUPID-0 results

Ovββ decay analysis

- $T_{1/2}^{ov} > 3.5 \cdot 10^{24} \text{ yr } @ 90\% \text{ C.I.}$
- $m_{\beta\beta}$ < 311-638 meV (depending on NME)
- Background at Q_{ββ}: 3.5·10⁻³ counts/keV/kg/yr
 - → Lowest ever in bolometric experiment
- Only ~6% of background from surfaces facing the crystal

$2\nu\beta\beta$ decay and background studies

- $T^{2v}_{1/2} = [8.6 \pm 0.03(stat)^{+0.17}_{-0.10}(syst)] \cdot 10^{19} \text{ yr}$
- Tested SSD vs HSD for ⁸²Se → HSD excluded
- Full background model using energy, time and space information
 - → Precise understanding of contaminant locations and intensities
 - → Novel technique to reconstruct events from the same U/Th decay chain

CUPID-Mo

Experiment structure

- Located in Edelweiss cryostat @ Modane
- 20 **Li₂MoO₄** crystals of ~210g enriched at 97% in ¹⁰⁰Mo
- 20 Ge wafers instrumented as light detectors
- Neutron transmutation doped (NTD) thermistors
- Silicon-based resistors used as heaters for pulser events

Data collection

- Physics data: March 2019 June 2020
- Analysed data: March-2019 April 2020
 - → Analyzed exposure: 2.16 kg·yr

CUPID-MO. EPJ C80 (2020) 44

CUPID-Mo results

Ovββ decay analysis

- Bayesian counting analysis in $Q_{\beta\beta}\pm50$ keV $T_{1/2}^{0\nu} > 1.5\cdot10^{24}$ yr @ 90% C.I. \Rightarrow Best result so far in 100 Mo! $m_{\beta\beta} < 0.3-0.5$ eV (depending on NME)
- BI O(10⁻³) counts/keV/kg/yr
 - → Precise evaluation with background model ongoing

CUPID-Mo is a real experiment, not just a demonstrator!

CUPID: CUORE Upgrade with Particle IDentification

- Profits of vast experience from predecessor experiments:
 - → isotope choice
 - → background suppression and active rejection
 - → cryogenic techniques
- Same cryogenic infrastructure of CUORE
- **Li_MoO**₄ scintillating crystals
- ¹⁰⁰Mo enrichment > 95%
- 45×45×45 mm³ crystals
- New, simpler tower structure (under advanced testing)
- ~1500 crystals → ~250 kg of ¹⁰⁰Mo
- Goal FWHM: 5 keV at Q_{ββ}
- ullet α rejection via particle identification on light detector
- Goal background: 10⁻⁴ counts/keV/kg/yr

CUPID, arXiv:1907.09376 CUPID, EPJ C 81 (2021) 2, 104 CUPID, arXiv:2011.11726 CUPID, JINST 16 (2021) 02, P02037

CUPID background projection and sensitivity

- Crystals
 - U/Th bulk → from CUPID-Mo
 - U/Th surface → from CUORE bkg-model
 - \circ 2νββ pile-up ($T_{1/2}^{2v} = 7.1x10^{18} \text{ yr}$)
- Crystal holders
 - U/Th surface → CUORE-0 bkg-model
- Reflector foil:
 - U/Th → CUPID-0 bkg-model + BiPo3
- Cryogenic infrastructure and shielding
 - U/Th bulk → CUORE bkg-model
- Muons → Cut by muon veto

Discovery sensitivity

- $T^{0v}_{1/2} = 10^{27} \text{ y}$
- $m_{gg} = 12-20 \text{ meV}$
 - → Fully cover the inverted ordering region

THANK YOU!