

Water Cherenkov Test Experiment

Matej Pavin, on behalf of the WCTE collaboration

TIPP 2021, May 25, 2021

Motivation

- Many existing and next-generation neutrino experiments use water Cherenkov technology
- With increase in collected data reducing systematics is of crucial importance
- Detector systematics are one of the dominant systematic contribution

Water Cherenkov Test Experiment (WCTE)

- Proposed experiment in East Area at CERN
- Small (d = 4 m, h = 4 m) water Cherenkov detector that will be used for
 - o developing percent level calibration of water Cherenkov detector
 - o measuring physical processes (pion scattering in water, Cherenkov light profile, secondary neutron production)
 - testing new technologies: multi-PMT, water based liquid scintillator
- WCTE will use electron, muon and hadron beams (0.2 1.2 GeV/c)
 - Secondary beam for electrons and muons
 - Tertiary beam for pions and protons

Physics goals

- Measurement of Cherenkov light production
 - Simulations not consistent.
- Study of energy scale calibration
 - Defined by muons crossing the detector
 - Reduction from 2% to 0.5% needed for Hyper-Kamiokande
- Measurement of secondary neutron production
- Study of pion scattering

East Area T9 beamline

- T9 beamline has been chosen for the experiment
- Max intensity: 5x10⁶
- Secondary beams 0.4 15 GeV/c

Estimated maximum flux in positive beam Total Total 100000 10

T9 Beam Momentum [GeV/c]

Water Cherenkov Test Experiment (WCTE)

WCTE Tertiary Beam Spectrometer ~12 cm ~12 cm ~20 cm ~20 cm Tungsten target 24 cm 10 cm-16 cm-Spectrometer axis tilted 450 mrad wrt. Magnet for momentum secondary beam Compensation measurements magnet B [kG] x component y component z component

60

80

100

120 z [cm]

Bending power (first magnet) = 0.075 Tm

Halbach array

ATLAS SCT (8 modules approved)

WCTE Tertiary Beam Spectrometer

- Tertiary beam particle ID will be done by measuring time-of-flight (with RPCs) and aerogel threshold Cherenkov detectors
 - Aerogel with index of refraction of 1.0026 was produced →
 it can be used to identify electrons (p > 350 MeV/c)

RPCs can be used to detect pion decays (kinks in trajectory)

Aerogel threshold
Cherenkov detector

Assuming 100 ps timing resolution

WCTE Tertiary Beam

Water Cherenkov Detector

- ~4 m diameter
- 128 mPMT modules
- Two beam windows

Water tank movement

 Water tank can slide on rails between secondary and tertiary beam position

Two different beam windows → secondary beam window can inject beam particles at different radial positions in the tank

Water system

- Commercially available water purification system
- Micro/nano-filters
- UV system to suppress biological contamination
- Ion exchange resins
- Special resin for Gd loading

Multi-PMT photosensor

- 19 8 cm PMTs (Hamamatsu R14374)
- Less photo-coverage but improved vertex resolution

Hadron interaction measurements in WCTE facility

Hadron interaction measurements in WCTE facility

- We are preparing LOI for a independent experiment that will use WCTE hardware
- Measurements of forward pion and kaon scattering
 - \circ π^{\pm} + C, Al, Fe \Rightarrow π^{\pm} + X and K^{\pm} + C, Al, Fe \Rightarrow K^{\pm} + X
 - Additional targets are possible
- Important for T2K, HyperK, DUNE, ...

Conclusion

- Reducing systematics in existing and future water Cherenkov detectors is of crucial importance
- WCTE will use the 50t water Cherenkov detector to study physics processes inside the detector with a well-defined beam and develop calibration techniques
- WCTE is a platform for testing new technologies (multi PMT, WBLS, ...)
- WCTE can become a facility → independent experiments such as hadron interaction measurements