

T2K ND280 Upgrade

Thorsten Lux
On behalf of the T2K Collaboration

The Tokai-to-Kamioka (TZK) experiment

T2K-II (2022-2026)

- New subdetectors for ND280
- beam power upgrade: 0.5 MW \rightarrow 1.1 MW (\rightarrow 1.3 MW HyperK)
- statistics: 3E21 POT (2018) → 12E21 POT (2026)
- aim: systematics from 5-6% to 4%
- Aim for CPV observation in optimal scenario at 3σ

UA1 Magnet Yoke

The current ND280 detector

Current limitations

- Tracks w/o TPCs (high angle).
- Tracks w/o TPCs (low momentum).
- ◆ Limited timing information => no direction information
- No neutron info
- Poor electron/photon separation
- → High detection threshold

The upgraded ND280 detector

Milestones

- + 2018 → TDR arXiv:1901.03750
- ♦ 2021/22 final modules
- 2022 installation

NIM A 957 163286 (2020)

JINST 13, P02006 (2018) JINST 15 P12003 (2020)

192cm

JPS Conf. Proc. 27, 011005 (2019)

1 SuperFGD

182 cm

56cm

1cm³

Scintillator cube

WLS fibers

A new scintillator tracker concept (SuperFGD)

X-axis

Scintillator cubes and Box design

- Production of all cubes (~2.1 millions) finished.
- All cubes and holes underwent quality control
- 56 layers + 1 spare (182x192 cubes) assembled
- Design of the box finished and validated with prototypes
- Box: 120k precise holes, has to withstand weight of 2 tonnes and earthquakes
- Production to be started soon

MPPC/Electronics/Calibration

- Approx. 60k MPPC will readout the fibers
- Design of electronics based on the CITIROC chip is being finished
- Excellent timing information: 2.5 ns binning
- Integrated calibration system will allow to calibrate all MPPCs regularly

SuperFGD Testbeam and MC Performance

- Various prototypes were exposed to testbeams at CERN (charged particles) and Los Alamos (neutrons)
- Charged particle analysis indicates good dE/dx and timing (published Dec. 2020, 2020 JINST 15 P12003)
- Neutron data analysis ongoing
- Used to tune MC
- Promising results for stopping particles

High Angle-TPCs

- 2 new TPCs being produced
- Dimensions: 1865x2000x820 mm3
- Composite materials for field cage
- Readout by 8 resistive Micromegas (ERAM) per side (novel technology)
- 1152 readout channels with 10.09x11.18 mm2 pads per ERAM
- T2K gas (95 Ar, 3 CF4, 2 iC4H10)

Providing tracking and particle identification

HA-TPC Field Cage

- TPC consists of 2 halves and separate cathode
- Production based on layers wrapped around mould
- 2 full length prototypes for 1 MM + several mock-ups were produced and tested
- Successfully tested:
 - Metrology
 - HV stability in air and argon up to 35 kV
 - Gas tightness

HA-TPC ERAM Modules

- Novel resistive MM readout
- Charge over several pads => better point resolution
- 32 ERAM modules needed + 8 spares
- Various prototypes with different RC parameters produced and tested
- Pre-production of 8 modules ongoing at CERN MPGD workshop

HA-TPC ERAM Results

- Prototypes tested in testbeams (DESY/CERN) and with cosmics (Saclay)
- Excellent understanding of performance of this new technology
- New reconstruction algorithms developed based on testbeam data

HA-TPC ERAM Results

- Very good dE/dx and point resolution performance
- For all angles better than 600 um (using different reconstruction algorithms)
- For first 15 cm values below 300 um
- dE/dx resolution below 10% for final detector

TOF

- 6 modules (2.3x2.5 m2) mounted each with 20 bars
- Double sided readout with 12 SiPMs per side
- Tested in several testbeams
- Excellent time resolution of 150 ps achieved
- Currently quality control of all modules using cosmics
- Important to determine direction of particles

Physics Impact

- Ugraded ND280 covering similar phase space coverage as SuperKamiokande
- Significant lower energy threshold
- Neutron detection capability

Much better constraint on beam and better cross section measurements!

Summary

- Upgrade of ND280 will be crucial to reduce systematic uncertainties
- Important not only for T2K but also HK/DUNE
- Novel technologies will be used
- All new detector technologies were tested in intensive testbeam campaigns
- Construction of new subdetectors progressing
- T2K collaboration looking forward for the data from the upgraded ND280 in 2023

Related Talks and Posters

- Talk:
 - "Scintillator cubes for 3D neutrino detector SuperFGD" by Sergei Fedotov
- Posters:
 - "The SuperFGD prototype PID beam tests"
 - "Development of the in-situ Calibration System using LEDs and Light Guide Plates for the SuperFGD"

Backup Slides

Physics Processes vs Event Topologies

Interaction modes in $CC0\pi$

topology: (NEUT, T2K ν_{μ} flux)

Several Near Detectors

ND280:

- Off-axis
- Magnetized
- Cross-sections

Others:

- WAGASCI
- NINJA