An Intermediate Water Cherenkov Detector for Hyper-Kamiokande Using the NuPRISM Concept

Mark Hartz
TRIUMF & Kavli IPMU, University of Tokyo
TIPP 2021, May 25, 2021

Hyper-K Experiment

- 260 kton detector with fiducial mass is 8x larger than Super-Kamiokande
- Neutrino beam from J-PARC will be 2.5 times more intense (1.3 MW proton beam)
- New photon detectors and near detectors
- 20x the rate of long baseline neutrinos than the T2K experiment
- Broad physics program includes
 - Accelerator neutrinos
 - Proton decay searches
 - Supernova neutrino detection
 - Atmospheric neutrino detection
 - Solar neutrino detection
 - Dark matter searches...

Neutrino Oscillation Measurements

• Over 295 km baseline, study neutrino oscillations:

$$u_{\mu} \rightarrow \nu_{\mu}, \ \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu}$$
 $\nu_{\mu} \rightarrow \nu_{e}, \ \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$

- Important measurements include:
 - Determine if there is CP violation in neutrino oscillations and measure phase δ_{cp}
 - Measure the mixing angle θ_{23} and determine if it is consistent with 45°
- Beam aimed 2.5° off-axis from direction to Hyper-K detector is narrow and peaked at oscillation maximum (in energy)

Neutrino Detection

Hyper-**K**amiokande

- Detect charged current scattering of (anti)neutrinos on nuclei
- Electron or muon in final state identifies flavour of parent (anti)neutrino
- In water Cherenkov detector, below threshold hadrons are not tracked - no full energy reconstruction
- Need accurate modeling of (anti)neutrino interactions but scattering on nuclei is difficult to model
- Hyper-K will have a suite of near/intermediate detectors to measure:
 - Properties of the (anti)neutrino beam
 - Properties of the (anti)neutrino scattering on nuclei

Error Source	% Error for CP Violation search
Error from near detector constraint	1.7
Modeling of events that aren't quasi-elastic scattering	2.1
Electron (anti)neutrino cross section error	3.0
Neutral current background error	1.0
Total cross section model error	4.1

Systematic Uncertainties

Hyper-Kamiokande

Uncertainties in T2K measurement (L. Berns, Moriond 2021)

Error Source	% Error for CP Violation search
Error from near detector constraint	1.7
Modeling of events that aren't quasi-elastic scattering	2.1
Electron (anti)neutrino cross section error	3.0
Neutral current background error	1.0
Total cross section model error	4.1

• Extrapolation of constraint from near detector isn't perfect - neutrino spectrum is different because no oscillation

Error Source	% Error for CP Violation search
Error from near detector constraint	1.7
Modeling of events that aren't quasi-elastic scattering	2.1
Electron (anti)neutrino cross section error	3.0
Neutral current background error	1.0
Total cross section model error	4.1

- Extrapolation of constraint from near detector isn't perfect neutrino spectrum is different because no oscillation
- Additional errors from modeling non-quasielastic scattering (pion production, multinucleon knockout

Error Source	% Error for CP Violation search
Error from near detector constraint	1.7
Modeling of events that aren't quasi-elastic scattering	2.1
Electron (anti)neutrino cross section error	3.0
Neutral current background error	1.0
Total cross section model error	4.1

- Extrapolation of constraint from near detector isn't perfect neutrino spectrum is different because no oscillation
- Additional errors from modeling non-quasielastic scattering (pion production, multinucleon knockout
- Electron (anti)neutrino cross section is not constrained at near detector with 99% muon (anti)neutrino beam
 - T2K error based on estimate of theoretical uncertainties

Systematic Uncertainties

Error Source	% Error for CP Violation search
Error from near detector constraint	1.7
Modeling of events that aren't quasi-elastic scattering	2.1
Electron (anti)neutrino cross section error	3.0
Neutral current background error	1.0
Total cross section model error	4.1

- Extrapolation of constraint from near detector isn't perfect neutrino spectrum is different because no oscillation
- Additional errors from modeling non-quasielastic scattering (pion production, multinucleon knockout
- Electron (anti)neutrino cross section is not constrained at near detector with 99% muon (anti)neutrino beam
 - T2K error based on estimate of theoretical uncertainties
- Neutral current backgrounds can fake electron (anti)neutrino candidates

Systematic Uncertainties

Error Source	% Error for CP Violation search
Error from near detector constraint	1.7
Modeling of events that aren't quasi-elastic scattering	2.1
Electron (anti)neutrino cross section error	3.0
Neutral current background error	1.0
Total cross section model error	4.1

- Extrapolation of constraint from near detector isn't perfect neutrino spectrum is different because no oscillation
- Additional errors from modeling non-quasielastic scattering (pion production, multinucleon knockout
- Electron (anti)neutrino cross section is not constrained at near detector with 99% muon (anti)neutrino beam
 - T2K error based on estimate of theoretical uncertainties
- Neutral current backgrounds can fake electron (anti)neutrino candidates

Challenges to Overcome

Hyper-Kamiokande

- Can measure electron (anti)neutrino cross section with 1% contamination in beam
 - Challenge: large background from beam induced external high energy gamma conversions (see T2K results to right)
 - Need to reduce this background
- Energy spectrum at near detector is different than far detector due to oscillations
 - Can't extrapolate near detector measurements perfectly
 - Nuclear effects -> large energy reconstruction error
 - Events with large energy mis-reconstruction can dominate some measurements (right)
 - Need direct measurements

The Intermediate Water Cherenkov Detector

- Intermediate detector for Hyper-K
- Located about 1 km from neutrino source
- 600 ton water Cherenkov detector
- Position can be moved to different off-axis angles
- Loading with Gd to enhance neutron detection
- Using new high resolution multi-PMT photon detectors

Approved Hyper-K project includes IWCD

NuPRISM Concept

Due to pion decay properties, neutrino spectrum varies with offaxis angle

Measurements at different off-axis angle can subtract high and low energy tails

Obtain very narrow spectrum

Measure reconstructed energy of events

5% measurement precision on events with large mis-reconstruction

Electron (anti)Neutrinos

• Using 1% contamination in beam, we measure:

$$\frac{\sigma(\mathbf{v}_e)/\sigma(\mathbf{v}_\mu)}{\sigma(\bar{\mathbf{v}}_e)/\sigma(\bar{\mathbf{v}}_\mu)}$$

- More off-axis position has larger fraction of electron (anti)neutrinos
- Water Cherenkov detector has large active shielding agains gamma background almost completely removed

- Compared to 3.0% error from T2K
- Aim to improve with application of machine learning

Moving Detector

- Moving the detector vertically to different off-axis angle positions is challenge
- Air-filled regions in tank make detector neutrally buoyant
- Water level in pit is kept at the detector level
- Rail system to guide detector as it moves
- Parts of the water system, readout electronics and calibration system are located on top of moving tank

Multi-PMT (mPMT) Photosensor

- · 19 3-inch diameter PMTs integrated in module with high voltage and readout electronics
- 8-cm diameter PMTs have excellent timing resolution (\sim 1.6 ns FWHM) with good spatial resolution
- · High voltage circuits and electronics mainboard are inside the module

Multi-PMT Mechanical Design

- · Acrylic used for transparent vessel
 - Pressure, transparency and permeability measurements
- Forward looking design with PVC cylinder and stainless steel backplate
- Optical gel couples PMT to acrylic
 - · Gel is added to PMT before assembly
- Module assembled from the backplate
 - · Last step is to lower dome in place

IWCD Calibration

- Calibration of IWCD is critical:
 - · Precision measurements require precision calibration
 - Moving detector must be precisely calibrated at each position
- · Detector components shift during moving?
- Photogrammetry used to measure the position of all detector components
 - Using cameras inside detector volume
 - Take images to do stereoscopic reconstruction of detector

Photogrammetry imaging concept

Photogrammetry camera in IWCD

See Talk by N. Prouse: Photogrammetry position calibration for water Cherenkov detectors 13

Calibration Deployment System

- We need to move various calibration sources throughout the detector volume
- · Use arm system with movement in all 3 dimensions
 - Rotation covers azimuthal angle
 - Cart on arm moves radially
 - Source hangs from cable for vertical motion
- This and other calibration systems will have first deployment in Water Cherenkov Test Experiment (WCTE) at CERN

CDS in Water Cherenkov Test Experiment

Also See Talk by M. Pavin: Water Cherenkov Test Experiment

Machine Learning

- International working group WatChMaL formed for development of machine learning in water
 Cherenkov detectors
- · Improved particle discrimination and resolution in IWCD across several particle types (see below)
- Massive processing speed-up:
 - fiTQun (likelihood based reconstruction) on CPU: <1 event per minute
 - ResNet on GPU: 100,000 events per minute

Summary

- The Intermediate Water Cherenkov Detector is important part of controlling systematic uncertainties for Hyper-K
- · Unique properties, including moving detector address measurement challenges in novel manner
- · High resolution photon detection and precision calibration are important to IWCD success
- · Machine learning will be applied to maximize potential of IWCD
- With approval of Hyper-K, IWCD is now moving towards the design completion and construction phase!

Thank you