Proton light yield of water-based liquid scintillator

E. J. Callaghan, B. L. Goldblum, J. A. Brown, T. L. Laplace, J. J. Manfredi, G. D. Orebi Gann

May 26, 2021

Introduction

Water-based liquid scintillator (WbLS) a new material under development

- ► Favorable Cherenkov/scintillation ratio
- Scalable

May see deployments in upcoming neutrino detectors

- ► Neutrino Experiment One (NEO)
- ANNIE
- ► THEIA

Proton light yield studies of myriad interest

- ▶ Background rejection for inverse beta decay (IBD)
- Quenching mechanisms
- Supernova studies via νp -scattering

Introduction - fast neutron background

Established antineutrino signal emanates from nuclear reactors

Upcoming NEO detector at AIT will be sensitive to reactor- ν IBD events

"Fast" neutrons ($\sim 10~\text{MeV})$ from surrounding rock form coincidence background

Using water-based liquid scintillator, could distinguish signal from background — but need to know what protons "look like"

"Double time-of-flight" method: Pulsed D beam on Be target

- ► PID-capable secondary detectors
- ▶ Brown et al, J. Appl. Phys. **124** (2018)

Protons excited via *n-p* elastic scattering internal to measurement sample

Two measures of neutron energy

- Before/after scattering
- ► Enforce beam-neutron hypothesis

Charge collected in photomultiplier tube (PMT) used as proxy for light

Two samples measured: LAB + 2 g/L PPO and 5% WbLS (from Yeh et al, BNL)

Existing LABPPO measurement: von Krosig et al, Euro. Jour. Phys. C 73 (2013)

Ed Callaghan WbLS PLY May $26,\ 2021$ $4\ /\ 1$

Technical approach - PMT linearization

Simultaneous measurement over broad energy range

PMT readout known to deviate from linear scaling (twice as many photons \Leftrightarrow twice as much charge)

Degenerate with nonlinearity in light yield scaling

TACCB0005EA

Desired: correcting function R^{-1} mapping digitizer readout to idealized readout from linear system

Method: Pulse two LEDs, both independently and in coincidence, to measure deviation from linear response

Friend et al, NIM A, **676** (2012)

Technical approach - PMT linearization

Method: Vary the amplitude of one pulse to measure over full range

Postulate that R or R^{-1} is polynomic

Minimize gross deviation from linearity: $\sum \left(\frac{R^{-1}(A_{1+2}) - R^{-1}(A_1) - R^{-1}(A_2)}{\sigma^2} \right)$

WbLS PLY Ed Callaghan

7 / 13

Technical approach - Charge calibration

Calibrate PMT charge by fitting to Compton edge of γ source

Model:

- Monte Carlo energy depositions
- ► Locally linear charge model
- Power law background

$$\frac{\mathrm{d}N}{\mathrm{d}Q} = G\left(\sigma\right) \otimes \frac{\mathrm{d}N}{\mathrm{d}Q} + B\left(Q\right)$$

 $rac{\mathrm{d}N}{\mathrm{d}E}$ expressed numerically $Q\left(E\right) = Q_C + \alpha\left(E - E_C\right)$ $B\left(Q\right) \propto Q^{-n}$

8 / 13

Technical approach - Timing calibration

 $\begin{array}{c} \textit{Incoming TOF} \\ \textit{Charge/time cuts to isolate } \gamma \textit{ peak} \end{array}$

Time since RF [ns]

Light yield results

Proton recoil selection achieved by PSD-selecting on neutrons in secondary detectors

Conclusion

- Proton light yield data acquired using 88-Inch cyclotron
- ▶ PMT nonlinearity characterized over measurement range
- ▶ Next: investigate compatibility with quenching models
- ► Finalizing LY results for publication

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Berkeley National Laboratory under Contract DE-AC02-05CH11231.

The project was funded by the U.S. Department of Energy, National Nuclear Security Administration, Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D), the Consortium for Monitoring, Technology, and Verification under Department of Energy National Nuclear Security Administration award number DE-NA0003920, and the Nuclear Science and Security Consortium under Award Number DE-NA0003180.

EJC/GDOG thank BANG for collaboration and expertise.