Progress of Kinetic Inductance Detectors on CaF2 for astroparticle physics

Zulfakri Mohamad1, Koji Ishidoshiro1, Yasuhiro Kishimoto1, Satoru Mima2, Tohru Taino3, Keishi Hosokawa3, Kosuke Nakamura1, Minori Eizuka3, Ryota Ito3, Hiroki Kawamura3

1RCNS,Tohoku University Japan, 2Riken Japan, 3Saitama University Japan.

Introduction

- Search for low-mass DM (WIMP-like particles) 10 - 100 GeV WIMP
- Approach:
 - Light nucleus target: CaF2
 - Electron target: Superconductor
 - Low energy detector: Kinetic Inductance Detector (KID)

Why CaF2?
- Scintillation crystal: strong fake reduction
- 19F: sensitive to spin-dependent DM scattering
- 48Ca: 2β decay nucleus

Why Kinetic Inductance Detector (KID)?
- Natural multiplexable
- Easy producible
- Suitable for large detector(s)

Objective

Feasibility study to fabricate superconducting detector on CaF2

Fabrication

KID design
- LC resonator circuit
- Kinetic Inductance Detector

Fabrication process
- Lithography
- Resist coating
- Al sputtering
- Resist coating
- Development
- Etching

Setup

Balanced mixer (MLIQ-0218L)
- AT1
- SG
- KID

KIDs on CaF2

Measurements and results

1. Resonance frequency

Resonance frequency by VNA

2. Temp sweep

Temp Sweep 15mK – 320mK

3. Power Sweep

The Q factor changed due to the power sweep

4. Particle detection

Detection of α ray events using Am241

Conclusions

KIDs on CaF2 substrate work properly at temperature 15 mK to 320 mK with high Q factor, more than 500k and responsive to the particle detection about 1 mrad/keV.

Future work

- New KID design for more sensitivity on the CaF2

Acknowledgements

This work was supported by KAKENHI Grant Number 19H05809 and 19H01917.