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Complex models : CNN and GNN

The ability to accu!ate.lg reconstruct events in JUNO is critical to the success f)f th.e experiment: The CNN and GNN are more complex and able to deal with more granular input, therefore
the energy resolution is expected to be 3%/y/E(MeV), and the vertex resolution is expected to

better than 10 cm.

Introcduction

provide better precision by processing the full information.

CNN GNN

e Project CD and build a 230x124x2 matrix; e Encode the topology of the input domain in a
graph structure;

e Both VGG and ResNet networks architecture
have been tuned for JUNO. e Adapt the DeepSphere model.
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Fig. 1: Schematic view of JUNO detector. § of 3 or 1
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In this poster, four machine learning (ML) methods applied to the vertex and the energy recon- . 100_/
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struction will be presented, including Boosted Decision Trees (BDT), Deep Neural Networks [x| =BatchNorm _/ =ReLU | 512/

(DNN), Convolution Neural Networks (CNN), and Graph Neural Networks (GNN). o
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Fig. 4: ResNet network architecture for CNN reconstruction with 53 weight layers.
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Data Preparation

The training and testing of neural networks has been performed on Monte Carlo (MC) samples

generated with the official JUNO software and further processed to include the most relevant IQ@COnStl'LICt.lOn I:)el'f() rmance
effects of the electronics response.
Training: 5 million MC e™, momentum from 0-10 MeV, uniformly distributed within the central

detector (CD).

Testing: MC e™, momentum (0, 1, ..., 10) MeV, 11 * 10k events, uniformly distributed within the Planar CNN Spherical
CD.
Architecture BDT DNN ResNet-J VGG-J GNN-J
Parameter Name Type [xsize Prediction  time sec/100k
ype [xsizc ’ / <1 <1 235 155 110
True information events
Event 1D int Prediction batch size 10° 10° 100 100 10*
D ] Ed fl .
eposited energy e oat Number of weights 6625 3.8x 107 2.6x 107 3.5 x 10°
Average position of the energy deposition ¢ y_edep, float x 3 Memory occupied by weights, 17 0.073 146 100 4.9
| z_edep MB . :
Aggregated information Training time, min/1M events 5 1000 1543 840 209
Total number of hits (nHits int Training batch size 700 64 64 64
X_cc,
Center of charge coordinates { y_cc, float x 3
Z_CC
Radial component of center of charge . rcc Aoat Fig. 5: Prediction time and memory usage for different models.
Average of the first hit time ht_mean float
Standard deviation of the first hit time ht_std float _
. . . 400 1—* ¢ DNN ] ¥ ¢ DNN
PMT-wise measured information ] ¥ BDT 3'0'; x ¥ BDT
Number of hits (photoelectrons) npe int £ 300 - Reshet e ] = nesNet)
., L : . S 1 VGG °L 257 1 VGG
Hit time of the first detected photon hittime float c * s 5 GNN
Position float x 3 5 200- z 320- 4
Type 20" Hamamatsu / 207 NNVT g - e ., I g | :
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The models of BDT and DNN are trained with aggregated information, pre-calculated from PMT F I 8 0.004—— —
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ht_mxe:rc, b 55 n:i: mw o s Fig. 6: Vertex (left) and energy (right) reconstruction performance for different models.
nHits + 0.5 § ht mean ’- 0.5 g
htj:l: : 0.253 hti: : 0_258 Conclusion We demonstrate that ML approaches achieve the necessary level of accu-
J cc } y_cc ; racy for reaching the physical goals of JUNO.
% g B ¢ R — 0.0 4 o V_;zlue(impgct N moﬁd ) outpuéltl) 5 0 e For the first time, ML has been applied to event reconstruction of large liquid scintillator
SR value (impact on model outpul detectors with a large number of PMTs, and the results look very promising.

e PMT-wise information is crucial for vertex reconstruction, the best resolution is around

Fig. 3: SHAP values for the vertex (left) and for the energy (right) prediction of DNN model.
Ox,y,z = 10 cm at E,is =1 MeV ;

Both BDT and DNN have beed tuned for JUNO.
e Simple models (BDT, DNN), using much less input, exhibit not much worse energy reso-

lution when compared to the complex models (CNN, GNN).
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e The results are preliminary and more studies are needed.

More detail can be found in arXiv:2101.04839.



