Low Energy Performance and Physics Reach of Hybrid Neutrino Detectors

M. Smiley\(^1,2\), B. J. Land\(^1,2,3\), Z. Bagdasarian\(^1,2\), J. Caravaca\(^1,2\), M. Yeh\(^4\) and G. D. Orebi Gann\(^1,2\)

1 University of California, Berkeley, Berkeley, California, USA, 2 Lawrence Berkeley National Laboratory, Berkeley, California, USA, 3 University of Pennsylvania, Philadelphia, Pennsylvania, USA, 4 Brookhaven National Laboratory, Upton, New York, USA

Main Aims

1. Demonstrate position, direction and energy reconstruction performance in hybrid optical neutrino detectors using most complete simulation model to date and full reconstruction, compared with standard optical detectors [1]
2. Assess physics impact for CNO solar neutrino and 0νββ searches for proposed next generation hybrid detector experiments such as Theia [1-2]

Hybrid Optical Neutrino Detectors

- Typical optical detectors rely on one of two production processes: Cherenkov radiation and scintillation emission
- Each process has characteristic distributions (angular, timing, wavelength)
- Hybrid detectors aim to fully leverage properties of both to extract as much information as possible about particle interactions
- Potential use of novel scintillating media, fast photodetectors, dichroic filters

Water-based Liquid Scintillator Model

- Class of novel scintillating liquids combining benefits of directional Cherenkov light, exploited in experiments like Super-Kamiokande and SNO, and high yield scintillation light, used in experiments like Borexino [3]
- WbLS in this work: mixtures of water and linear alkyl benzene loaded with 2,5-diphenyloxazole (LAB+PPO)
- Measured simulation inputs: scintillation light yield [4], spectra and timing [5]
- Refractive index, absorption length, reemission probability, scattering length assumed as combinations of water, LAB+PPO

Detector Simulation and Event Reconstruction

- Flexible simulation framework based on Geant4, GLG4 and RAT-PAC designed to efficiently produce results in variety of configurations
- Interactions simulated in large target volumes with full photon tracking stored
- Hypothetical photodetector surface applied with specified quantum efficiency (QE), transit time spread (TTS), coverage
- Ignores reflections, physical photodetector size, photodetector noise
- Event vertex reconstruction performed using hit time residuals
- Direction reconstruction performed by using cosθ between reconstructed position & hit locations for prompt photons to isolate Cherenkov component
- Energy reconstruction performed using number of detected hits

Physics Impacts

- CNO solar neutrino study like [2,6] performed by simulating signals, backgrounds and smearing truth information by energy and direction resolution (from performance for 1 MeV electrons)
- Assessed impact of simple 8B solar neutrino rejection via direction reconstruction in LS on 0νββ study as in [2] (10 years exposure)

Conclusions

- Hybrid detectors at kt, multi-kt scale allow for robust reconstruction at low energies relevant for many neutrino physics applications
- Potential for competitive CNO solar neutrino measurement, enhanced 0νββ measurement via hybrid technology

References and Acknowledgements

[1] B. J. Land et al., MeV energy solar neutrino study like [2,6] performed by simulating signals, backgrounds and smearing truth information by energy and direction resolution (from performance for 1 MeV electrons)

Acknowledgements

The authors would like to thank the SNO+ collaboration for providing

Fig. 1: Schematics of angular, timing, wavelength distributions of Cherenkov (blue), scintillation (red) emission

Fig. 2: Potential 25 kt (left) and 100 kt (center, right) detector configurations [2]

Fig. 3: Water-based liquid scintillator cocktails displaying scintillation [3]

Fig. 4: True photon direction distributions of detected hits (QE applied) for 50 kt detectors with 10% WbLS (left), LAB+PPO (right) with different time cuts

Fig. 5: Directional, position, energy reconstruction performance for 1 kt (left) and 50 kt (right) hybrid detectors with LS fraction (% entries at 10^4 represent performance in water)