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Fig. 1: Schematics of angular, timing, wavelength distributions of Cherenkov (blue), 
scintillation (red) emission 

• Hybrid detectors at kt, multi-kt scale allow for robust reconstruction at low 
energies relevant for many neutrino physics applications

• Potential for competitive CNO solar neutrino measurement, enhanced 0νββ
measurement via hybrid technology

• Centrally-generated electrons at 2.6 MeV used to assess performance 
across configurations (target, size, photodetector timing), 90% coverage

• Scans over rise, decay times performed to understand response to emission 
profile in different materials from those currently measured

• Proposed multi-purpose, multi-kiloton, hybrid optical neutrino detector
• Two proposed scales, 25 kt and 100 kt, at depth of Sanford Underground 

Research Facility (SURF), 4300 mwe with 90% PMT coverage

Theia

Fig. 2: Potential 25 kt (left) and 100 kt (center, right) detector configurations [2]

1. Demonstrate position, direction and energy reconstruction performance in 
hybrid optical neutrino detectors using most complete simulation model to 
date and full reconstruction, compared with standard optical detectors [1]

2. Assess physics impact for CNO solar neutrino and 0νββ searches for 
proposed next generation hybrid detector experiments such as Theia [1-2]
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Main Aims

Hybrid Optical Neutrino Detectors

Water-based Liquid Scintillator Model

• Typical optical detectors rely on one of two production processes: 
Cherenkov radiation and scintillation emission

• Each process has characteristic distributions (angular, timing, wavelength)
• Hybrid detectors aim to fully leverage properties of both to extract as much 

information as possible about particle interactions
• Potential use of novel scintillating media, fast photosensors, dichroic filters

• Class of novel scintillating liquids combining benefits of directional 
Cherenkov light, exploited in experiments like Super-Kamiokande and SNO, 
and high yield scintillation light, used in experiments like Borexino [3]

• WbLS in this work: mixtures of water and linear alkyl benzene loaded with 
2,5-diphenyloxazole (LAB+PPO) 

• Measured simulation inputs: scintillation light yield [4], spectra and timing [5]
• Refractive index, absorption length, reemission probability, scattering length 

assumed as combinations of water, LAB+PPO

Detector Simulation and Event Reconstruction

Fig. 3: Water-based liquid scintillator cocktails displaying scintillation [3]

Physics Impacts

Conclusions
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Detector Performance

• Flexible simulation framework based on Geant4, GLG4 and RAT-PAC 
designed to efficiently produce results in variety of configurations

• Interactions simulated in large target volume with full photon tracking stored
• Hypothetical photodetector surface applied with specified quantum efficiency 

(QE), transit time spread (TTS), coverage
• Ignores reflections, physical photodetector size, photodetector noise
• Event vertex reconstruction performed using hit time residuals
• Direction reconstruction performed by using cos𝜃 between reconstructed 

position & hit locations for prompt photons to isolate Cherenkov component
• Energy reconstruction performed using number of detected hits

Fig. 3: True time residual distributions of detected hits (QE applied) for 50 kt detectors 
with 10% WbLS (left), LAB+PPO (right) for different photon production mechanisms

Fig. 5: Directional, position, energy reconstruction performance for 1 kt (left) and 50 kt 
(right) hybrid detectors with LS fraction (%, entries at 10-1 represent performance in water)

• CNO solar neutrino study like [2,6] performed by simulating signals, 
backgrounds and smearing truth information by energy and direction 
resolution (from performance for 1 MeV electrons)

• Assessed impact of simple 8B solar neutrino rejection via direction 
reconstruction in LS on 0νββ study as in [2] (10 years exposure)

Fig. 7: Relative uncertainty on fitted CNO normalization as function of scintillator fraction 
(%) and photodetector TTS, w/ and w/o constraint on pep flux from theory in 5 yr exposure 

for 1 kt (left) and 50 kt (right) 
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Fig. 4: True photon direction distributions of detected hits (QE applied) for 50 kt detectors 
with 10% WbLS (left), LAB+PPO (right) with different time cuts

Detector Performance (contd.)

Fig. 6: Reconstruction performance in scan over decay time in 50 kt with fixed 1.0 ns rise 
time (left) and rise time in 1 kt with fixed 2.5 ns decay time (right) for LS and 10% WbLS

Fig. 8: Half-life sensitivity for 0νββ of 130Te for 50 kt LS detector with 8m Te-loaded LS 
balloon deployment as function of cut on solar angle for various photodetector timings
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Large area picosecond 
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fast photodetectors

• Dichroic filters
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