

Operational Experience and Performance with the ATLAS Pixel detector at the Large Hadron Collider at CERN

Chris Scheulen[†] on behalf of the ATLAS Collaboration

II. Physikalisches Institut, Georg-August-Universität Göttingen

1. Data Taking Conditions

For Run 2 (2015 - 2018) compared to end of Run 1:

- Bunch crossing (BC) time (collision interval) halved from 50 ns to 25 ns
- \bullet Higher instantaneous luminosity (up to $2 \times 10^{34}\,\mathrm{cm^{-2}\,s^{-1}}$) & collision energy increased from 8 TeV to 13 TeV
- Avg. pile-up μ (particle interactions per BC) increased from $\sim\!20$ to $\sim\!35$
- Peak $\mu\sim$ 60 reached
- ullet Overall luminosity $\mathcal{L}_{\mathsf{int}} = 156 \, \mathsf{fb}^{-1}$ delivered by LHC (Run 1 and Run 2)
- ⇒ Challenging data taking conditions

2. Detector Operation

- Pixel detector data quality efficiency was 99.5 % in Run 2
- Analogue discriminator threshold adjustments due to bandwidth limitations with increasing pile-up
- Low voltage transistor leakage current dependence on total ionising dose (TID) in IBL front-ends
- → Threshold & time-over-threshold (ToT, related to charge deposition and dissipation) drift due to TID
- → Frequent retuning required

Bandwidth usage vs. avg. pile-up per lumi block (\sim 60 s) during 2018 with 3σ error bars. L0-L2 denote the Pixel layers, ECA/ECC the endcaps.

IBL time-over-threshold means and RMS values for recalibrations performed during 2018

The ATLAS Pixel Detector

- Silicon pixel detector, innermost part of ATLAS detector
- Critical for particle tracking and b-tagging (flagging b-flavour jets)
- During Run 1 (2010 2012) 3 tracking layers and 3 disk endcaps per side
- Insertable B-layer (IBL) added during Long Shutdown 1 (2013 - 2014)
- Planar sensors (in central region) and 3D sensors installed

	Pixel (+Endcaps)	IBL
Pixel Size [µm²]	50×400	50×250
Target Spat. Resolution [µm²]	10×115	10×40
No. Channels	$80 imes 10^6$	12×10^6
Front-End CMOS Technology	250 nm	130 nm
Radius [cm] (Pixel: Layers Only)	5.05 8.85 12.25	3.35
Max. Fluence $[1 { m MeV} n_{ m eq} { m cm}^{-2}]$	$1 imes 10^{15}$	$5 imes 10^{15}$
Max. Bias Voltage [V]	600	1000
Technical design parameters of IBL and Pixel		

Cut-away of the ATLAS detector

Schematic of the ATLAS Pixel detector (pre-IBL) with added detector coordinate system

3.1 Single Event Effects

- Ionising particles may corrupt single pixel or global front-end module registers Altered registers usually not read back during data taking
- Results in quiet (if pixel enable bit flips) or noisy pixels and low-voltage current changes depending on specific fault, mostly in IBL
- Periodic reconfiguration without additional dead-time of global (single pixel) registers successfully deployed (tested) during Run 2 [1]

Single event effect in IBL global register. The resulting current change and occupancy drop is later fixed via manual reconfiguration.

[1] G. Balbi, et al., JINST **15**, P06023 (2020)

Hit occupancy of IBL modules with (red) and without (black) automatic pixel register re-configuration during regular detector re-synchronisation periods to avoid introducing detector dead-time.

3.2 Radiation Damage & Mitigation

Evolution of $\langle dE/dx \rangle$ and cluster sizes for Pixel B-layer during Run 2. The steady decrease is due to radiation damage, the jumps due to changes in the calibration, especially the threshold.

B-layer hit-on-track efficiency (tracks with a hit on the B-layer as a fraction of total tracks fulfilling selection criteria) vs. pseudorapidity $\eta = -\ln(\tan(\theta/2))$, i.e. polar angle proxy with central values near origin). hybrid threshold is 4300 e⁻ in the four central modules

and 5000 e⁻ elsewhere.

- During Run 2, IBL received fluence of up to $\Phi = 1 imes 10^{15}~1\,\mathrm{MeV}\,n_\mathrm{eq}\,\mathrm{cm}^{-2}$, less for outer layers
- Charge collection efficiency decreased due to charge trapping
- Compensated with lower threshold
- → Balance between bandwidth capabilities and radiation damage
- $-\eta$ -dep. (hybrid) threshold used to address variable fluence in 2018
- Pixel bias voltage increased yearly to ensure full depletion
- Pixel digitisation model including fluence effects developed for Run 3 [1]

grated luminosity. Run 2 data is compared with a radiation damage simulation. At the end of Run 2, the efficiency has decreased to 70 %.

[1] M. Aaboud, et al. (ATLAS), JINST **14**, P06012 (2019)

see poster 418 (Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector) as well for more details

Conclusions & Outlook

- ATLAS Pixel detector showed excellent performance during Run 2 despite large increases in luminosity, pile-up, and particle radiation
- Radiation damage visible for Pixel detector especially for IBL but did not significantly affect physics results yet
- Yearly increase of bias voltage for continued complete depletion, danger of B-layer bias voltage exceeding service limits during Run 3
- Radiation damage will be an ongoing concern for Run 3
- ⇒ First mitigation strategies were developed during Run 2, will be further refined during Run 3:
 - Hybrid threshold calibration for balance between bandwidth and radiation damage, plans to decrease thresholds overall
 - Automatic single (global) pixel register re-configuration in IBL (all modules)
- New ATLAS Pixel digitisation model including fluence effects for understanding and anticipating calibration needs