

ALICE ITS upgrade for LHC Run 3

Commissioning in the laboratory

ALICE in Run 3 and ITS 2

ALICE in Run 3

Physics motivations

High precision measurements of rare probes over broad p_T range

- Heavy-flavour mesons and baryons down to very low p_T
- Charmonium and Bottomonium states
- Dileptons and low-mass mesons
- Light (anti-)nuclei and hypernuclei

Data taking strategy

- Very low S/B ratio prevents selection with hardware trigger
- Large minimum bias data sample through continous readout
- Improve tracking efficiency and resolution at low p_T
- Preserve Particle Identification (PID)

Upgrade strategy

- New silicon trackers: ITS 2 (midrapidity), MFT (forward rapidity)
- New TPC readout chambers (GEMs) and electronics
- New Fast Interaction Trigger (FIT) detector
- Fast readpout for other detectors (TOF, TRD, Muon spectrometers, ZDC, ...)
- New Online plus Offline system (O² project)

ITS 2 project

Main targets

- Primary and secondary vertex reconstruction
- Access low p_T tracking

Detector requirements

- Improve impact parameter resolution
 - Reduce distance from IP to first layer → new beam pipe
- Reduce material budget and pixel size

End of commissioning

Figure A

- Improve tracking efficiency and p_{T} resolution at low p_{T}
 - Increase granularity \rightarrow from 6 to 7 layers all pixels
- Increase readout capabilities

Detector components and status

7-layer barrel geometry based on ALPIDE chips

- Inner Barrel (IB) : 3 layers
- Outer Barrel (OB): 4 layers
- r coverage: (min) 22 (max) 394 mm
- η coverage: (min) 1.3 (max) 2.5
- 12.6 Gigapixels
- Total active area ~ 10 m²

Inner Barrel

48 staves

End of installation in ALICE

- 9 ALPIDE chips on 1 row per stave
- chip thickness: 50 µm
- stave length: 290 mm
- distance from IP: (min) 22 (max) 42 mm

Outer Barrel

- 54 staves in ML + 90 staves in OL
- ML: 56 ALPIDE chips on 2 rows per stave
- OL: 98 ALPIDE chips on 2 rows per stave
- chip thickness: 100 µm
- stave length: 843 1473 mm
- distance from IP: (min) 194 (max) 394 mm

tuned

untuned

Start of commissioning

Commissioning in Laboratory

Commissioning organization

- Fully equipped clean-room at CERN (Bld. 167) for layer assembly and commissioning \rightarrow Same backend system that will be used in the experiment (Cooling plant, Power and Readout racks, Trigger and DAQ system)
- Commissioning of the detector in laboratory completed in December 2020
- Verification of detector performance and long stability of parameters before installation inside the cavern
- Commissioning shifts 24/7 started in July $2019 \rightarrow 3$ daily teams with 2 shifters + 1 shift leader

Inner Barrel

- Threshold Tuning (Figure A): Adjustment of frontend parameters to equilibrate the charge threshold archiving uniform detector responce; threshold stability over time -> Really good threshold uniformity
- Fake-hit rate (Figure B): threshold is a trade-off between detector efficiency and fake-hit rate → measured fake-hit rate below 10⁻¹⁰ hits/pixel/event → Extremely quiet detector
- Alignment study (Figure C): correlation in the three layers of the clusters produced by cosmic tracks

Figure C Figure B IBT (111 MPixel), VBB=0 $O(10^6)$ (runs 101877-10196: track candidates 10^{-9} Mask bad pixels common to at least 80% of runs Mask bad pixels common to all runs

Outer Barrel

- Stability test (Figure D):
 - Slight variations in the voltage applied to the chips require multiple runs (5-10) to detect all hot pixels → Room for powering procedure improving
 - Noise performance very good
 - Negligible threshold variations over time \rightarrow **Detector stable over time**

1000000