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Data Analysis (I): Extrapolated Interaction Flux

The rate measurement is fully performed in current mode using a Keithley
6487 pico-ammeter:

L in x transparenc
| Gap configuration 3/1/2/1 mm - 1 M protection resistors on the top (90 x transpa Y)

[~ Foils with 100 k< protection resistors on the bottom
| Gas: ArCO, (70/30) - Gas flow rate: 5 Lihr

Data Analysis (lll): Effective Gas Gain Compensation

A compensation measurement is performed to determine the new bias voltage at which the detector
should be powered during the high-flux irradiation:
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| X-ray tube: Silver(Ag) target - 22 keV X-ray photons
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1. for a low particle flux (i.e., low X-ray powering current), the anode
current increase linearly with the increasing count rates
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2. for a high particle flux (i.e., high X-ray powering current), the anode 2. to maintain the nominal electric fields between the foils and gaps

L} . |
e ~4- Measured Anode Current Density

Anode Current Density (WA/cm

current fairly saturates with the increasing count rates 005 + Bt s Cur oty Agompe_n_sa_tion algorithm has been d_eveloped to restore the gas Nominal Operation Gain (x 10%
O the saturation is exclusivelv due to aas aain drop! N AT RN IR gain stability in a harsh background environment:
y g g P "0 20 40 60 80 100 120 140 160 180 200 .l < (f - ny - 2i0 4.|0 6i0
- - . . . . - i et 3 u 20 - I I b
O a curve fitting is used for parameterizing the experimental data and ray Tube Powering Current (uA) | 1. measure the y = B, “and ™e ¥ m¥ “bn each electrodes to calculate & i
_ the effective voltage on the electrode during the high-flux irradiation: 2.0 -i-mm;ﬁwﬁﬁ-
allows to extrapolate the expected (real) anode current: CMS Muon R&D L X A .
(\"—\220: 10 6m x 10 cm triple-GEM detector layout | | J”L 4P r 4 pro E . [ J”L 4 ) E‘%h [ J”L 4 P - [ c — s iii;
o . . S0 ST Talll Ty R S o i
* Wlth U O O O E 180} fi:?:ﬁ%s;::::) )tjjse:jog:p:vi’-:r hotons +++ b|aS VOItage current COIIeCted o - B Gap configuration 8/1/2/1 mm - TM$2 protection resistor on the IcrpEgﬁ
é 160:_ Effe:fiveg:asgain:g2>< fﬂ" g -H‘}.} | on the eIeCtrOde ) % i Fuoils with 100 k£2 protection resistors on the bottorm
P C e ) | ) B _ _
] ] ] ] e 1 40:_ ’ .H ) 16 | Gas: Ar/CO, (70/30) - Gas flow rate: 5 L/hr
3. at fixed X-ray powering current, the extrapolated interaction X-ray © 100l ﬁ,ﬁi voltage drop on the resistor Q vy s S gt - 22 ke oo
photon flux is given by inverting the gas gain formula: £ 100" AT Il. calculate the discrepancy with respect to the electrode voltage S " 3 Ettective gas gain before compensation '!.‘
extrapolated anode & | # gl aps - - - o 14
P _ O g L (=, ¥ ‘):|:a|,[ e nominal effective gasgainof¢ p 1T T - —J— Ettective gas gain after compensation
I —  current density o e r o oars L oars Loqp. -
_ _ o 1L B E s -3 S . =|=ITI!‘I1r - 12" CMS wmuon R&D
extrapolated |nteraCt|On . 4 > - ﬁ -Ir - 40:— (!,;.i —4- Expected Particle Flux L T [ | . T : uon
+ W2 . 200 L o Cumering Ill. increase iteratively each electrode voltage b ST “Bhntilm —
photons flux = € N (-")\ detector effective & e s y H 9¢ by g »B 1 - 1 0
: 0 20 40 60 80 100 120 140 160 180 200 _"_- By 4P° B T m : : :
gas galn X_ray Tube Powering Current (MA) [ II m o [] i ™ =|= | P&I’th'G FlUX N MEO Statlon (MHZ/SeCtOI')
4. Radial Segmentation of the GEM-foils — 4.0 CMS Muon RsD ~1.98CMS Muon A&D
. . . . . . L. . L . e) :. Gap configuration 3/1/2/1 mm - 1 MQ protection resistors on the top o L Gap configuration 3/1/2/1 mm - 1 M protection resistors on the top
The solution adopted to minimize the gas gain drop consists of dividing each electrode of GEM foll in fine S a5, ket ot ok 1960 o osm o Azimuthal segmentation constraints:
high-voltage sectors along the azimuthal-direction with respect to the LHC beam line: new GEM:-foil layout ;:S ol A = | O high-voltage sector area: p T G &
P . . . . HV o S 3 (qv] - Effective gas gain = 2 x 10° .
A each high-voltage sector is powered separately and is connected to a protection resistor, in o ° ===== = . (31 92/ . (to reduce the discharge energy)
order to limit the total current flowing through each protection resistor 5 140} 3 o= H*n 81000 “N‘ e O high-voltage sector side length v & &
O equal-area sectors: maximum safe surfacex p T ad to reduce the discharge energy > 130F E 20 “n“ﬁ PPN “** (design / manufacturing requirements)
, . . . &) i e, = B i
A the background particle rate is expected to be approximately the same on each sector even - £ 15 3 1 860 ' : :
though the background flux shape is highly uneven in the radial-direction : o TR Chosen segmentation for best gas gain
B " 184~ # _Off:
O equal-protection resistors to ensure prevention/protection against self-sustained discharges 110; - 4 Simuation on GEM prototype G & Simulation an GEM protoype drop / sector surface trade-off:
. . . - M Region of Non-Interest 1.82 ’_”'l Region of Non-Interest I -
A the azimuthal-direction segmentation is independent on the background model (i.e., all the rates “’05 e |D | | S . . | | ] 40 high-voltage sectors
will move up or down together in parallel with any changes in the radial bkg. radiation profile) 9 920 25 30 3 40 45 50 "% 25 a0 35 40 45 50
O avoid uncertainty in the simulated background flux (GEANT4 vs FLUKA discrepancy) sol _ _ Nurr.lber ot HV S_eCtor_S _ _ N_umber of HV Sectors _ _
: Simulations on the azimuthal-direction segmentation with 40 high-voltage sectors shows that the hit rate per sector in the
70F | | CMS-MEO background can be contained to an average of 8 - AL | J”|= -<while the gas gain drop can be minimized to
0 10 20 about fof the nominal value of ¢ p Tt _
X (cm) 5. Conclusion
example of azimuthal - The studies presented show a new approach on the rate capability problem of triple-GEM detectors, applied to the high-rate

segmentation with 40 sectors environment expected for the innermost muon station of the CMS endcaps for the high-luminosity upgrade:
A o 1 mon-uniformity in hit A The rate capability of large-area triple-GEM based detectors has been demonstrated to be limited by the protection resistors;

rate per high-voltage sector A The measured gas gain drops can be as high as 1 © of the expected gas gain, which can be recovered by applying
) _ o overvoltage to the detector electrodes and maintaining the nominal electric fields between the foils and gaps;
A X pb non-uniformity in ]

: A The main mitigation strategy chosen for the CMS-MEOQO detectors involves a radial segmentation of the GEM-foils with respect
detector gas gain (lower ) O , . . .
than the intrinsic detector to the beam line: such redesign is expected to reduce the gas gain loss during CMS operations not higher than p i .

response uniformity [2]) [1] A. Colaleo et al., CERN-LHCC-2017-012, CMS-TDR-016, 12 September 2017.
[2] F. Fallavollita et al., Novel triple-GEM mechanical design for the CMS-MEO detector and its preliminary performance, JINST 15 (2020) no.08, C08002.



