Characterization of RD53A pixel modules with passive CMOS sensors

Franz Glessgen^a, Malte Backhaus^a, Florencia Canelli^b, Yannick Manuel Dieter^c, Jochen Christian Huegging^c, Arash Jofrehei^b, Weijie Jin^b, Ben Kilminster^b, Anna Macchiolo^b, Daniel Muenstermann^d, David-Leon Pohl^c, Branislav Ristic^a, Rainer Wallny^a, Tianyang Wang^c, Norbert Wermes^c, Pascal Wolf^c

CMS market survey submission by LFoundry:

150 μm thickness

built using CMOS technology

 $25 \times 100 \ \mu m^2$ pixel size

IV measurements Phase 2 requirements: 0.75 μ A per cm² at V_{dep} + 50 V Breakdown > 300 V

→ Leakage current and

is also well behaved.

breakdown voltage in

→ The first batch of bare sensors showed a very high leakage current $(V_{dep} = 40 V).$

backside implant doping.

- compliance with the Phase-2 specifications. → Fixed by increasing the → The IV after irradiation
 - DC 25x100, high doping, on chip, T = 20 degrees 10^{-1} DC 50x50, high doping, on chip, T = -25 degrees ² E 10^{−2} dose = 5×10^{15} neq.cm² AC 50x50, low doping -- DC 25x100, low doping ⊕ 10⁻³ -- AC 50x50, low doping DC 50x50, low doping 10^{-4} ensity 10⁻⁵ Max current at $V_{dep}+50$ V ₹ 10⁻⁶ $3 10^{-7}$ 10^{-8} 250 300 350 150 200 Bias voltage (in V)

 n^+ in p

Efficiency

CMOS sensors and stitching

The characterized samples are passive planar n-in-p sensors for hybrid modules built in CMOS technology using the 150 nm production line of LFoundry and the stitching process.

Advantages of CMOS sensors:

- → Reuse of CMOS libraries from the industry
- → Large throughput and low cost
- → Implementation of small on-pixel features

LFoundry on-sensor features:

- → Metal layers on the sensor for signal redistribution
- → DC or AC-coupled sensors
- → Low and high resistivity polysilicon layers

Phase 2 requirement: 99 % efficiency at $V_{dep} + 50 V$

The efficiency is the probability of detecting a hit on the sensor within 500 µm of each reconstructed hit. Testbeam measurements give the following results.

- → The efficiency requirement is satisfied before the depletion voltage.
- → The stitching process does not reduce the efficiency.

- a: Institute for Particle Physics and Astrophysics, ETH Zürich, Zürich, Switzerland
- b: Universität Zürich, Zürich, Switzerland c: University of Bonn, Physikalisches Institut, Bonn, Germany
- d: Physics Department, Lancaster University, Lancaster, U.K.

Crosstalk

Capacitive coupling between neighbouring pixels leads to spurious hits and can deteriorate the sensor's resolution.

- RD53A of a known charge the crosssmaller talk than 3%.
- → Injection through the → The ratio of the lowest charge over the total charge for 2-pixel clusters showed cross-talk is smaller than 6%.

Resolution

Minimal resolution of $2.2 \mu m$ in the $25 \mu m$ direction around 9.5 degrees. The CMS tracker has a Lorentz angle of 11.5 degrees.

Next steps

- Modules irradiated up to 10^{16} neq.cm $^{-2}$ to be tested - New sensor submission expected this year

Charge collection

→ Time-over-threshold distribution from DESY testbeam runs.

0.998

0.996

0.994

0.992

0.99

→ Charge calibration of the RD53A using fluorescent X-ray sources.

Full charge collection of approximately 12000 electrons is reached for a bias voltage of 40 V.

