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• The p-n junction formed by highly-doped p+ and n+ gain layers is buried several microns below the 
surface of the device.

• The high-resistivity n-type isolation layer is used to lower the electric field down from the n+ layer to 
preserves electrostatic stability for the segmented surface of the detector.

• The electric field in the gain layer, or multiplication region, will be large enough to create impact 
ionization gain.

• Regions outside of the multiplication region will have significantly less electric field, but large 
enough to saturate the carrier drift velocity

• Device operates at full depletion, and it’s DC-coupled to a readout electrode.

Motivation: Granularity Limitation 
on Low Gain Avalanche Detectors (LGADs)

• Conventional Low-Gain-Avalanche-Detectors (LGADs) with spatially segmented readouts uses a 
surface structure, so called the Junction-termination extension (JTE), to prevent early breakdown 
due to high electric fields generated by a highly-doped p-type multiplication layer. (as shown in 
figure)

• The JTE structure introduces “dead region” between readouts, thus limiting the granularity to 1mm 
scale.

• To make use of LGADs technology in future experiments (i.e., 4D tracking) would requires 
granularity of better than 100um.

• we propose a new approach to resolve this limitation : the Deep-Junction LGADs.

Demonstrating the DJ-LGAD Idea with TCAD Simulation

• Sentaurus (TCAD) is used to simulate a baseline setup of DJ-LGAD model.

• Electrical properties, such as electric field profile,  I-V curve, and gain-voltage curve were 
explored in simulation.

• Injection of minimum-ionization particle (mip) is performed to simulate transient signal 
responses.

1. Electric field strengths along the surface to the back of the device at 
the center of a channel  are shown for various bias voltages.

2. The peak region is generated by the highly-doped n+ and p+ gain 
layers, and the regions with relatively lower field comes from the n-
type diffusion region and p-bulk.

3. The simulation shows that field within the peak region is high enough 
to trigger an impact ionization process.

4. The diffusion region maintains a relatively lower field but large 
enough to reach carries drift velocity saturation.

1. Deposition of energy track is 
simulated to represent a mip
injection. The dynamic 
responses (or transient signals) 
from the readout electrodes are
extracted.

2. Signal from the channel for 
which the mip is injected 
experiences a non-zero integral 
response with rise time of order 
100ps.

• Gain as function of reversed 
bias voltage. 

• Gain > 10 is achievable for 
bias voltage ~280V. 

High Density Interconnect (‘’3D Integration’’)

Edge Termination Strategies

The Deep Junction LGAD (DJ-LGAD) Concept
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1. Enabling of new forms of self-supporting 
structures.

2. Highly-packed in-situ processing (on focal plane), 
bringing together hetero-material device 
interfaces.

3. Fine pitch 3D integration. Phase-1 design has pitch 
in order of ~10 um.

• Simulation of pixel array with 20um 
pitch.

• Total sum of gain from all channels in 
terms of transverse position of 
incidence of a mip.

• Uniformity across channels is within 
5%.
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The gain layer needs to be terminated from the physical edge of the device. 
Two edge termination strategies are proposed: 

Symmetric: the lateral extended range is the same for both n+ and p+ 
layers.

Antisymmetric: the n+ extends longer than the p+ layer.

Techniques for achieving deep Junction: 
Epitaxial growth (BNL) 

Realistic Design for Phase-1 Fabrication

1. Deep junction created on conventional wafers used for LGADs
2. A 5um thick p-type HR epitaxial layer has been grown
3. n+ electrodes (strip and pixels) are then implemented and DC-contacted by aluminum.

Wafer-Wafer bonding (Cactus Material)

1. First using ion implantation to create n+ and p+ gain layers on separate wafers.
2. The P-N junction development of the gain layers using wafer-to-wafer bonding 

approach.

Wafer Mask Design/Layout Layout of a single diode
Conclusion & Plans

• The concept of Deep Junction LGAD (DJ-LGAD) is introduced 
and simulated with TCAD software.

• Part of designs for the Phase-1 fabrication was shown.   

• Prototype of the Phase-1 design were produced by BNL & 
Cactus Material. Samples are ready for laboratory testing and 
measurements.

• Design refinement and parameter optimization with TCAD 
simulation. Working toward Phase-2 fabrication.


