New Approach for Achieving High Granularity Low Gain Avalanche Detector The Deep-Junction Low Gain Avalanche Detector (DJ-LGAD)

Y. Zhao^a, S. Ayyoub^b, W.Chen^c, C.Gee^a, G. Giacomini^c, R. Islam^b, S.M. Mazza^a, S. Mony^b, B. Schumm^a, A. Seiden^a,

^aThe Santa Cruz Institute for Particle Physics and the University of California, Santa Cruz ^bCACTUS Material, Inc ^cBrookhaven National Laboratory

Motivation: Granularity Limitation on Low Gain Avalanche Detectors (LGADs)

Conventional Low-Gain-Avalanche-Detectors (LGADs) with spatially segmented readouts uses a surface structure, so called the Junction-termination extension (JTE), to prevent early breakdown due to high electric fields generated by a highly-doped p-type multiplication layer. (as shown in figure)

• The JTE structure introduces "dead region" between readouts, thus limiting the granularity to 1mm

Demonstrating the DJ-LGAD Idea with TCAD Simulation

- Sentaurus (TCAD) is used to simulate a baseline setup of DJ-LGAD model.
- Electrical properties, such as electric field profile, I-V curve, and gain-voltage curve were explored in simulation.

. Electric field strengths along the surface to the back of the device at the center of a channel are shown for various bias voltages.

- 2. The peak region is generated by the highly-doped n+ and p+ gain layers, and the regions with relatively lower field comes from the ntype diffusion region and p-bulk.
- 3. The simulation shows that field within the peak region is high enough to trigger an impact ionization process.

4. The diffusion region maintains a relatively lower field but large

enough to reach carries drift velocity saturation.

- scale.
- To make use of LGADs technology in future experiments (i.e., 4D tracking) would requires granularity of better than 100um.
- we propose <u>a new approach</u> to resolve this limitation : the Deep-Junction LGADs.

- The Deep Junction LGAD (DJ-LGAD) Concept
- The p-n junction formed by highly-doped p+ and n+ gain layers is buried several microns below the

• Injection of minimum-ionization particle (mip) is performed to simulate transient signal responses.

surface of the device.

- The high-resistivity n-type isolation layer is used to lower the electric field down from the n+ layer to preserves electrostatic stability for the segmented surface of the detector.
- The electric field in the gain layer, or multiplication region, will be large enough to create impact ionization gain.
- Regions outside of the multiplication region will have significantly less electric field, but large enough to saturate the carrier drift velocity
- Device operates at full depletion, and it's DC-coupled to a readout electrode.

Element	Doping Level (N/cm^3)	Extent In Depth
N isolation layer (N	constant doping of	From 0 µm to
bulk)	3×10^{12}	beginning of N+ "gain
		plate" layer
N+ gain plate (upper	Gaussian, peak doping	peak at 4 µm, Gaussian
half of gain layer)	3×10^{16}	width of $0.17\mu{ m m}$
P+ gain plate(lower	Gaussian, peak doping	Peak at 5.5 µm,
half of gain layer)	3×10^{16}	Gaussian width of
		$0.17\mathrm{\mu m}$
P drift region (P bulk)	constant doping of	End of P+ "gain plate"
	3×10^{12}	layer to $50\mu m$
P stop	constant doping of	1 μm deep at surface,
	1×10^{13}	1 μm wide
N++ implant (under	constant doping	at surface
electrode)	1×10^{19}	
Gain layer doping	effective operation peak	
tolerance (N+ and P+	doping between	
varied together)	$2.9 \times 10^{16} \mathrm{and}$	
	$3.5 imes 10^{16}$	

High Density Interconnect ("3D Integration")

C-LGAD

Realistic Design for Phase-1 Fabrication

Techniques for achieving deep Junction:

Epitaxial growth (BNL)

- . Deep junction created on conventional wafers used for LGADs
- 2. A 5um thick p-type HR epitaxial layer has been grown
- 3. n+ electrodes (strip and pixels) are then implemented and DC-contacted by aluminum.

Wafer-Wafer bonding (Cactus Material)

- 1. First using ion implantation to create n+ and p+ gain layers on separate wafers.
- 2. The P-N junction development of the gain layers using wafer-to-wafer bonding

Edge Termination Strategies

The gain layer needs to be terminated from the physical edge of the device. Two edge termination strategies are proposed:

Symmetric: the lateral extended range is the same for both n+ and p+ layers.

Antisymmetric: the n+ extends longer than the p+ layer.

*** ********

HR sensor slab/wafer

Current Pixel detector designs

0 0 0 0 0 0 0 0 0 0 0 0 0

Outputiinterconnect

Assembly

ROIC

Conclusion & Plans • The concept of Deep Junction LGAD (DJ-LGAD) is introduced and simulated with TCAD software. • Part of designs for the Phase-1 fabrication was shown. • Prototype of the Phase-1 design were produced by BNL & **Cactus Material. Samples are ready for laboratory testing and**

• Design refinement and parameter optimization with TCAD simulation. Working toward Phase-2 fabrication.

This work was supported by the United States Small Business Innovation Research (SBIR) Program.

This work was supported by the United States Department of Energy grant DE-FG02-04ER41286

This work was partially performed within the CERN RD50 collaboration.

This work was supported in part by a Launchpad Grant awarded by the Industry Alliances & Technology Commercialization office from the University of California, Santa Cruz.