

Innovative Safety Monitoring System based on Fiber Optic Sensors Technology Compatible with 4-20mA Standard

Vincenzo Romano Marrazzo*1,2, Francesco Fienga^{1,3}, Dario Laezza^{1,2}, Michele Riccio¹, Andrea Irace¹, Salvatore Buontempo^{2,3}, Giovanni Breglio^{1,3}

¹Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Italy
²National Institute for Nuclear Physics (INFN), Section of Napoli, Italy
³European Organization for Nuclear Research (CERN), Geneva, Switzerland.

* vincenzoromano.marrazzo@unina.it

Introduction

Typical interrogation block chain noncompliant with Detector Safety System

Proposed Solution

To take advantage of the FOS sensing feature within a safety monitoring system to be used in harsh environments (like DSS frontend) an optoelectronic interrogation system must be:

✓ Reliable and robust;

1st order fitting:

resolution of

 $0.02^{\circ}C/10\mu A$

- ✓ Purely analog, avoiding digital processing;
- ✓ Capable to restore the output if a malfunction occurs;
- ✓ Compatible with 4-20mA standard (PLC system).

Experimental Measurement and Conclusion

☐ Purely analog PLC compatible interrogation

system has been developed.

- ☐ The system is compliant with industrial processes and to be used in safety scenario.
- ☐ The system is capable to restore the output in case of malfunctions.
- ☐ If a device or a connection in the loop breaks down the system automatically sets the output in alarm mode.
- \Box A single channel for $\Delta T = 70^{\circ}C$ monitoring has been designed and experimentally validated.
- ☐ A pilot project is present with the CMS experiment. The system will be ready for a test in few weeks.

