Development of FPGA based 128-Channel TDC for Time Projection Chambers

Yuvaraj.E^a, S.S. Upadhya^a, M.N.Saraf^a, Jim Jhon^a, B.Satyanarayana^a, Gobinda Majumder^a, Chithra^b India based Neutrino Observatory

^aTata Institute of Fundamental Research, Colaba, Mumbai - 400005, India. ^bIndian Institute of Technology Madras, Chennai - 600036, India.

Prototyping Friendly

Importance of timing in TPC T+9 T+11

- Charged particle traverses the TPC volume, ionizes the gas atoms along its trajectory.
- The free electrons produced move towards anode with a speed depending on the gas mixture and the applied field.
- Arrival times and hit channel information are used to track the particle.
- Arrival times of these slow-moving electrons at the anode provides precise position of interaction.

Working Principle

- ➤ An FPGA-based Start-Stop type Time to Digital Converter is designed.
- To Acquire the trajectory of the particle A trigger is generated using coincidence of scintillator detectors placed top and bottom of TPC.
- ➤ The TDCs common 14 bit Coarse counter Starts on Trigger arrival.
- ➤ When a electron\hit signal arrives the TDC latches 14 bit counter value
- Also a 2 bit fine counter value captured from the 4 Phase shifted clocks
- This method is called Shifted Clock Sampling
- Together this forms a 16 bit timestamps of arrived hit signal.

Block Diagram CLK IN HIT Splitter > CLK 0 > CLK 90 PLL → CLK 180 > CLK 270 Fine CLK 0 --> Counter CLK 90 ---> CLK 180and CLK 270→ CLK 0 Encoder 128:1 14 bit 14 bit Coarse 2bit fine Coarse Counter **TDC** Latch Logic BUFFER 4 x 32 bits

TDC Core

- shited clocks as input for time stamp.
- Each sector is provided with dedicated 4 32 bit registers for storing hit time stamps.

FPGA Resources

Family Cyclone IV E

FPGA Device EP4CE115F29C7

Total logic elements

40,620 / 114,480 (35 %)

Total pins

362 / 529 (68 %)

Total memory bits

2,939,328 / 3,981,312 (74 %)

Embedded Multiplier

4 / 532 (< 1 %)

Total PLLs 2 / 4 (50 %)

TDC Specifications

- 100 MHz Coarse clock
- 128 Channels
- Dynamic Range 160us
- Resolution 2.5ns
- Multi hit up to 4
- Both Leading and Trailing edge measurement
- 32 bit Time stamp
- Configurable Parameters
- Multiplexer based Timestamp Register Access
- Can be scaled to 256 Channels

Conclusion

- TPCs requires marginally lower resolution of timing device but more channel density
- Designing an ASIC with more channel density complicates the design.
- FPGA based TDC can be easily scaled to more channels.
- Also with higher operating Frequency higher Resolution can be achieved.
- PLL and DCMs must be used to maintain jitter free clock

Visiit: http://www.ino.tifr.res.in/ino/