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ATLAS Liquid Argon Calorimeters

Convolutional Neural Networks (CNNs)

FPGA Implementation

Phase-II Readout Electronics Upgrade

Recurrent Neural Networks (RNNs)

particle shower readout per cell

● Designed for inference of time series and 
extraction of underlying parameters
➡ Applies to LAr energy reconstruction

● Long Short-Term Memory (LSTM) 
architectures optimal for long sequences

● Restrictions on internal network dimensions 
of LSTM cells and limitation on one layer to 
meet FPGA resource constraints
➡ Vanilla-RNN with less parameters and 
lower expected size on hardware

● Single-neuron dense layer for decoding 
LSTM output and calculating the energy

● Linear combination of subsequent samples as for currently 
used optimal filter (OF), but with more hyper-parameters, 
like layers, feature maps and activation functions

● Trigger sub-network detecting energy deposits over 
electronic noise threshold

● Pre-training of trigger part increases performance

● Energy Reconstruction sub-network uses trigger output 
and raw ADC samples to calculate energy

● Activation function: Rectified Linear Unit (ReLU)
➡ Only forwards positive values

Single-cell application (many-to-many RNN)
● Same operation repeated until the end of 

data
● Expected higher robustness for overlapping 

pulses

Sliding-window application (many-to-one RNN)
● Focus on few subsequent bunch crossings of 

interest
● Expected higher robustness for isolated data 

pulses

Sliding-window LSTM

➡ Increased signal efficiency and background rejection 
compared to OF for trigger as well as combined network

Performance

Direct VHDL implementation for CNNs
● Optimal usage of DSPs on the FPGA
● Modular firmware design adopting to 

model files from training

● CNN and LSTM networks outperform OF in terms of bias in mean and 
of resolution

● Artificial neural network algorithms are robust against pulse shape 
distortion by overlapping events
➡ Improved energy reconstruction at small time gaps

High Level Synthesis for RNNs
● Additional design flexibility
● One LSTM cell instance for single-

cell, five for sliding-window 
implementation

➡ CNNs use less resources allowing the processing of more channels per 
FPGA
➡ LSTMs candidates for readout processing with less stringent latency 
constraints

Energy range dependent deviation of energy resolution ➡ Additional penalty term in loss function:

● Sampling calorimeter with ~180k cells for measuring energy deposits of electrons, photons and jets
● Triangular ionization pulse is amplified, shaped and sampled at 40 MHz

2027: High Luminosity phase of Large Hadron Collider (HL-LHC) 
starts
● Expected luminosities of up to 7.5 times the nominal value
● Mean of up to 200 simultaneous proton-proton collisions

Challenges for the LAr calorimeters:
● Overlap of up to 25 signal pulses created in subsequent bunch 

crossings possible
● New trigger scheme allowing selection of events in subsequent 

bunch crossings

Installation of new LAr Signal Processor (LASP) boards in so-called 
Phase-II Upgrade during Long Shutdown 3
● FPGA for implementation of advanced real-time energy 

reconstruction algorithms
● Maximum latency of about 150 ns for energy reconstruction algorithm
● 512 LAr calorimeter cells to be processed by one FPGA

Simulations performed with dedicated ATLAS Readout Electronics 
Simulation framework AREUS
● Generates digitized pulse sequences
● Takes analog and digital electronic noise, as well as LHC bunch 

patterns into account 
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