

Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters

ATLAS Liquid Argon Calorimeters

- Sampling calorimeter with ~180k cells for measuring energy deposits of electrons, photons and jets
- Triangular ionization pulse is amplified, shaped and sampled at 40 MHz

Convolutional Neural Networks (CNNs)

- Linear combination of subsequent samples as for currently used optimal filter (OF), but with more hyper-parameters, like layers, feature maps and activation functions
- Trigger sub-network detecting energy deposits over electronic noise threshold
- Pre-training of trigger part increases performance
- Energy Reconstruction sub-network uses trigger output and raw ADC samples to calculate energy
- Activation function: Rectified Linear Unit (ReLU)

→ Increased signal efficiency and background rejection compared to OF for trigger as well as combined network

		Lover	Vormal	Dilation	Faatura	Activation	Number of	Pagantiva	
		Layer	Kernel		Feature			Receptive	
			Size	Rate	Maps	Function	Parameters	Field	
	Trigger	1	3	1	5	sigmoid	51	28	
"3-Conv"	Trigger	2	6	1	1	sigmoid	31		
3-Conv	Energy Re-	3	21	1	1	ReLU	43		
	construction	3	21	1	1	Kelo	43		
	Triggar	1	3	1	5	sigmoid	51	13	
"4-Conv"	Trigger	2	6	1	1	sigmoid	31		
4-Conv	Energy Re-	3	4	1	3	ReLU	37		
	construction	4	3	1	1	ReLU	37		

Energy range dependent deviation of energy resolution → Additional penalty term in loss function:

FPGA Implementation

	Network	Frequency	Latency	Resource Usage						
		F _{max} [MHz]	clk _{core} cycles	#DSPs		#ALMs				
	3-Conv CNN	493	62	46	0.8%	5684	0.6%			
	4-Conv CNN	480	58	42	0.7%	5702	0.6%			
	Vanilla-RNN (sliding)	641	206	34	0.6%	13115	1.4%			
	LSTM (single)	560	220	176	3.1%	18079	1.9%			
	LSTM (sliding)	517	363	738	12.8%	69892	7.5%			

- Direct VHDL implementation for CNNs High Level Synthesis for RNNs Optimal usage of DSPs on the FPGA Additional design flexibility
- Modular firmware design adopting to One LSTM cell instance for singlemodel files from training cell, five for sliding-window implementation
- → CNNs use less resources allowing the processing of more channels per **FPGA**
- → LSTMs candidates for readout processing with less stringent latency constraints

AREUS Simulation EMB Middle $(\eta, \varphi) = (0.5125, 0.0125)$ $x < \mu > = 140, E_{-}^{true} > 240 MeV$ —— Vanilla-RNN(sliding) LSTM(single) — – LSTM(sliding) --- 3-Conv CNN 4-Conv CNN E_{T} (firmware) - E_{T} (software)

E_⊤(software)

Phase-II Readout Electronics Upgrade

2027: High Luminosity phase of Large Hadron Collider (HL-LHC) starts

- Expected luminosities of up to 7.5 times the nominal value
- Mean of up to 200 simultaneous proton-proton collisions

Challenges for the **LAr calorimeters**:

- Overlap of up to 25 signal pulses created in subsequent bunch crossings possible
- New trigger scheme allowing selection of events in subsequent bunch crossings

Installation of new LAr Signal Processor (LASP) boards in so-called Phase-II Upgrade during Long Shutdown 3

- FPGA for implementation of advanced real-time energy reconstruction algorithms
- Maximum latency of about 150 ns for energy reconstruction algorithm
- 512 LAr calorimeter cells to be processed by one FPGA

Simulations performed with dedicated ATLAS Readout Electronics Simulation framework **AREUS**

Generates digitized pulse sequences

• Takes analog and digital electronic noise, as well as LHC bunch patterns into account

LAr Signal Processor (LASP) OTx Array

Recurrent Neural Networks (RNNs)

- Designed for inference of time series and extraction of underlying parameters
- Long Short-Term Memory (LSTM)

→ Applies to LAr energy reconstruction

- architectures optimal for long sequences
- Restrictions on internal network dimensions of LSTM cells and limitation on one layer to meet FPGA resource constraints → Vanilla-RNN with less parameters and
- lower expected size on hardware Single-neuron dense layer for decoding

LSTM output and calculating the energy

- Single-cell application (many-to-many RNN) • Same operation repeated until the end of
- Expected higher robustness for overlapping pulses

data

Sliding-window application (many-to-one RNN) Focus on few subsequent bunch crossings of

interest Expected higher robustness for isolated data pulses

Performance

- CNN and LSTM networks outperform OF in terms of bias in mean and of resolution
- Artificial neural network algorithms are robust against pulse shape distortion by overlapping events
- → Improved energy reconstruction at small time gaps

1. Technical Design Report for the Phase-II Upgrade of the ATLAS LAr Calorimeter, Tech. Rep. CERN-LHCC-2017-018, CERN, Geneva, Sep, 2017. https://cds.cern.ch/record/2285582. 2. W. Cleland and E. Stern, Signal Processing Considerations for Liquid Ionization Calorimeters in a High Rate Environment, Nucl. Inst. Meth. A 338 (1994) no. 2, 467–497.

