

The data transmission

The ITk Pixel data transmission (DT) chain

electronics room (and trigger and command

transports the detector signals from the

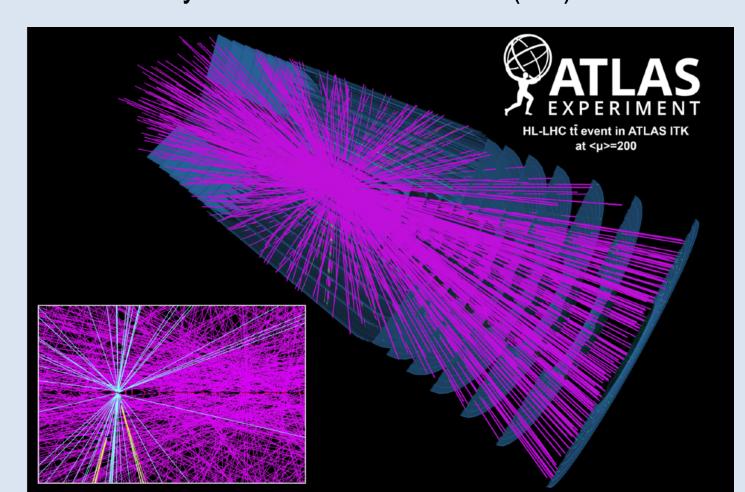
The Opto-electrical conversion system

(Optosystem) is the key stage that allows

modules to the readout cards in the

in the opposite direction).

Specifications:

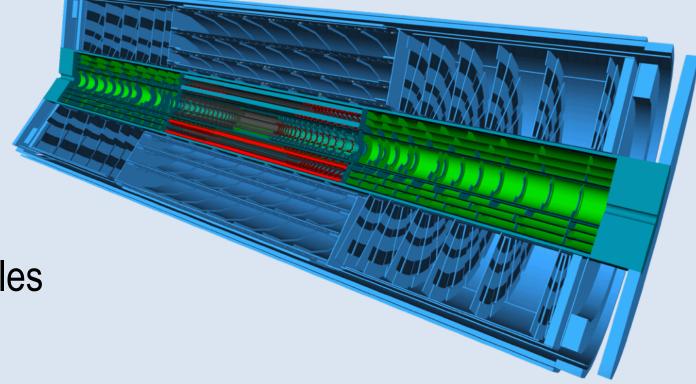

chain of the ITk Pixel

The Opto-electrical conversion system for the data transmission chain of the ATLAS ITk Pixel detector upgrade for the HL-LHC

High particle density and data rate in the HL-LHC call for the new ITk detector in ATLAS

The High-Luminosity LHC will deliver an average of 200 collisions per bunch-crossing.

In ATLAS, this large flux of particles will be detected by the new Inner Tracker (ITk) detector.


Simulated event display of a HL-LHC tt event in ATLAS ITk.

The ITk will feature highly segmented, radiation-hard modules and fast read-out electronics.

The ITk Pixel detector comprises about 10000 modules, each sending data at a rate up to 5.12 Gb/s.

Its layout consists of:

- an Inner System, with flat and ring modules
- an Outer Barrel, with flat and inclined modules
- an Outer Endcap, with ring modules

CAD of the ITk detector. The innermost layers are the Pixel section.

See F. Munoz Sanchez's talk, https://indico.cern.ch/event/981823/contributions/4293588/

Power boxes

MOPS

BPOL12V

10V to 2.5V stage

BPOL12V

for electrical signal recovery, serialisation and conversion to optical.

- Multiple 6x 1.28 Gb/s data signals from detector (uplink) to 1x 10.24 Gb/s optical signals
- 1x 2.56 Gb/s trigger and commands (downlink) to 8x 160 Mb/s electrical lines
- Radiation-hard components (expected NIEL: 7x10¹⁴ n_{eq}/cm², TID: 50 kGy)
- Independent powering of elements reading separate serial powering (SP) chains
- Very limited space at R~1450 mm, z ~ 3500 mm
- Compliant with cooling and grounding and shielding specifications

The Optoboard

The Optoboard.

and 8 dov

It is the heart of the Optosystem.

Faraday Cage

IpGBT Master It hosts radiation-hard, custom-made chips:

- four GBCRs (Gigabit Cable Receivers) recover the signals coming from the detector (uplinks) after ~6 m of electrical cables (twinax) and ~1 m on-detector services
- four IpGBTs (low-power GigaBit Transceivers) serialise 6 uplinks at 1.28 Gb/s into a single 10.24 Gb/s line
- the VTRx+ module converts the electrical signal into optical

The twinax cables are soldered on the Termination board connected to the Optoboard.

Optoboxes

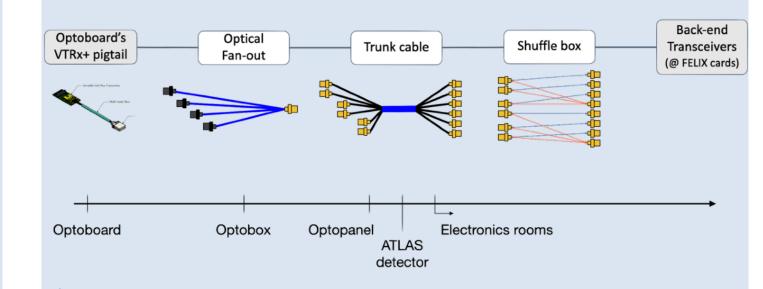
8 Optoboards per Optobox

Conn.

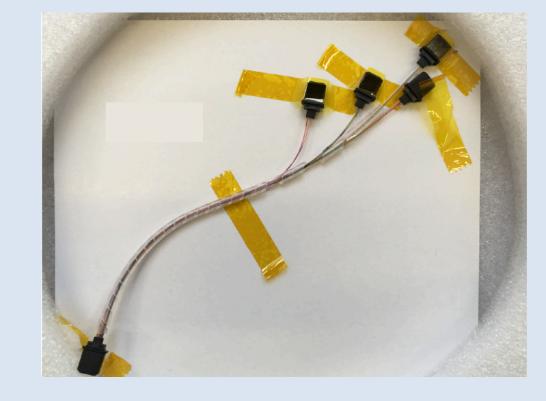
BPOL2V5

2.5V to 1.2V

VTRx+ Module

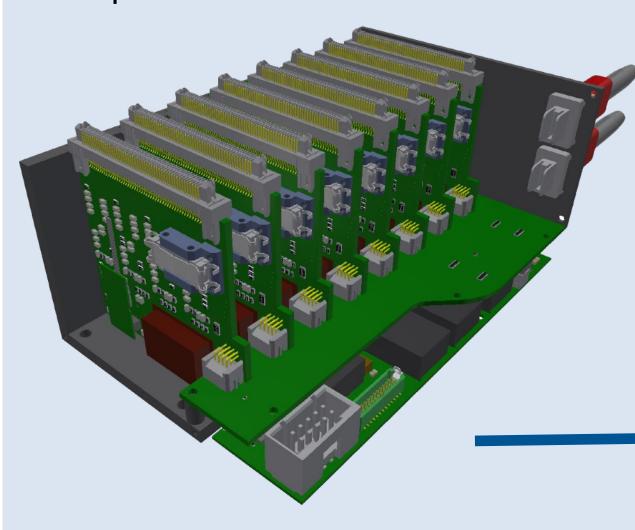

1.2V Power Plane 2.5V Power Plan

Fibres to the


readout cards

The optical fibre system

Transmits the optical signals from the VTRx+ module to the FELIX readout cards.


 Several flavours of optical fan-outs and shuffle boxes optimise the number of active fibres bringing signal between the detector and the readout cards (FELIX)

First prototype of the in-box optical fan-out.

The mechanics

The Optobox

CAD of an open Optobox. Optical fibres are not shown. On the bottom right, the Powerboard.

The Optobox hosts:

- up to 8 Optoboards
- the optical fan-out fibres
- the Connector board

The Powerboard is hosted by the Powerbox.

The Optosystem consists of 222 Optoboxes

 Each Optobox contains Optoboards that read only a type of sub-detector

Shielding of twinax cable bundle The Optopanel The Optoposyste • There are • Each Optoposyste • Optoboxe cable cha • Entrance

Design of the Optopanel.

The Optopanel is the Faraday cage of the Optosystem

Conn.

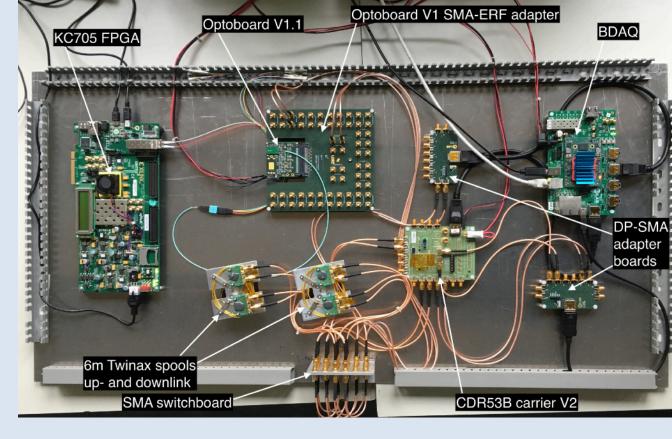
- There are four Optopanels per ATLAS side
- Each Optopanel contains 28 Optoboxes
- Optoboxes are arranged in rows, to form twinaxcable channels and optical-fibre channels
- Entrance for twinax cables, OptoPatchPanel for connectors and fibres
- Its floor is a cooling plate, for thermal management

The powering scheme

Custom-made DCDC converters distribute the power to the Optosystem chips:

- bPOL12V converts 9 V into 2.5 V (5 chips on each Powerboard)
- bPOL2V5 converts 2.5 V into 1.2 V (1 chip on a separate carrier board, mounted on each Optoboard)

Only Optoboards reading the same SP chain are biased by the same bPOL12V.


The Connector board distributes the 2.5 V power.

The Powerboard.

Validation of the Optosystem

- Tests on the single components: VTRx+, IpGBT, GBCR (e.g. Bit Error Rate (BER) and jitter tests, scan of the setting phase space to find optimal values)
- Tests of the first two prototypes of the Optoboards, as individual elements and in the data transmission setup
- BER and jitter tests, to validate the DT chain
- First test on complete DT chain, from FELIX card to readout chip
- Irradiation of components of the DT chain (see L. Halser's talk, https://indico.cern.ch/event/981823/ contributions/4293580/)
- Experimental verification of the powering scheme concept
- Tests and simulation of the thermal management

The Bern data transmission setup.

