Upgrade of the Belle II ARICH detector

Motivation: Proximity focusing Aerogel RICH at Belle II

- **Aerogel RICH currently identifies charged particles in the Belle II spectrometer. Cherenkov photons, emitted in the aerogel radiator are detected by single-photon Hybrid Avalanche Photomultipliers (HAPMs) and combining an area of 4.5 m².** By 2020 the Belle II will reach its design goal of 50 ab⁻¹ and the HAPM performance will degrade.

- The upgrade of the spectrometer to extend its operation will thus require replacement of the ARICH photo-sensors. Silicon photomultipliers are one of the candidates. Due to its sizeable dark count rates and their sensitivity to neutrons — we expect fluctuations of up to 5x10⁻¹⁴ m² — such a device requires to read out the signals in a narrow time window of several ns, requiring optimized SiPM design and high integration with the read-out electronics.

Experimental setup

- **Irradiated samples**
 - Irradiation at TRIGA nuclear reactor at Jožef Stefan Institute, Ljubljana
 - Fluence: 1.6x10²¹ n/cm²

Use of irradiated SiPMs at room temperature very challenging.

In the context of EC Horizon 2020 AADAmoos innovation pilot we are studying the SiPMs with improved radiation resistance.

- **Objectives we are addressing:**
 - SiPM design: Review the production process, change of the design and production
 - Reduction of a cross-talk and after-pulses
 - Use of smaller area SiPMs
 - Integration of the readout electronics with the sensor:
 - TSV interconnects with the ASIC
 - Signal Processing in the front end
 - light collection:
 - Focus light from e.g. 3x3mm² to 1x1mm²
 - Recovery of the operation at lower temperatures — annealing

Tests at Liquid Nitrogen

- **T=196 °C**

SiPM very attractive sensor

- Its use can be used to extend ARICH capabilities for low momentum region

Light collection

- **FASTC current mode ASIC**
 - **8 Inputs:** 2 Single Ended (positive or negative) or 4 differential.
 - 4/8 Outputs: CMOS, LVDS and Analog
 - Summation in clusters of 4 channels.
 - Energy: Linear Time over Threshold with high dynamic range.
 - Different trigger levels and cluster trigger for monolithic crystals.

Silicon photomultipliers

- **Advantages:**
 - low operation voltage: 10-100 V
 - gain: up to 10⁸
 - peak PDE up to 65% (@400nm)
 - PDE = QE x e⁻μ x τ
 - τ — decay time between the cells
 - μ — Geiger discharge probability
 - intrinsic time resolution ~100ps
 - can be combined in larger modules in contrary to PMT
 - it works in the magnetic field

- **Disadvantages:**
 - dark counts ~ few 100Hz/mm²
 - radiation damage (uJ)

Experimental setup

- **Probe station to measure:**
 - IV-curves
 - Waveform acquisition with DB54
 - DCR with Ni-Counter
 - Temperature controlled sample
 - Peltier with water cooling

Current mode input

- **Differential channels**
 - **SE channels w input**
 - **READOUT**

SiPM 1x1mm² + light guide

This work focuses on the use of silicon photomultipliers as a photon detector.