

Motivation: Proximity focusing Aerogel RICH at Belle II

- the production line. • We are seeking for the replacement candidates able to detect single photons • with high efficiency and
 - would withstand the neutron fluence up to ~5x10¹² n/cm2

During R&D of Belle II ARICH, 3 candidates have been tested

This work focuses on the use of silicon photomultipliers as a photon detector.

Silicon photomultipliers

Advantages:

- low operation voltage~ 10-100 V
- $\Box \quad gain \sim 10^6$ peak PDE up to 65%(@400nm)
- PDE = QE x ε_{aeiger} x ε_{geo}
- dead space between the cells
 ε_{geiger} – Geiger discharge probability
- intrinsic timing resolution ~ 100ps
- can be combined in larger modules Pulse height distribution in contrary to PMT
- it works in the magnetic field
- **Disadvanteges:**
- dark counts ~ few 100kHz/mm²
- radiation damage (p,n)

-B=0T

--- B=1.5 T

5 um cell pitch

Define working conditions for SiPMs to be used in the Belle II ARICH Upgrade

<u></u> ≦10-3	
10.4	
10-4	
10-8	
10-7	
10-8	-
10.4	
10.11	mary
- E	10-11-1

SiPM very attractive sensor Its use can be used to extend ARICH capabilities for low momentum region

International Conference on Technology and Instrumentation in Particle Physics

Upgrade of the Belle II ARICH detector

<u>Rok Pestotnik¹</u>, Giacomo Borghi⁵, Rok Dolenec^{2,1}, David Gascon⁴, Alberto Gola⁵, Samo Korpar^{3,1}, Peter Križan^{2,1}, Joan Mauricio⁴, Alberto Mazzi⁵

Sergio Gomez Fernandez⁴, David Sanchez Gonzalo⁴, Andrej Seljak¹

¹Institut Jožef Stefan, Ljubljana, Slovenia, ²University of Ljubljana, Slovenia, ³University of Maribor, Slovenia,

⁴University of Barcelona, Spain, ⁵Fondazione Bruno Kessler, Trento, Italy

Aerogel RICH currently identifies charged particles in the Belle II spectrometer. Cherenkov photons, emitted in the aerogel radiator are detected by single-photon Hybrid Avalanche Photon sensors working in a 1.5 T magnetic field and occupying an area of 4.5 m². By 2030 the Belle II will reach its design goal of 50 ab^{-1} and the HAPD performance will degrade. The upgrade of the spectrometer to extend its operation will thus require replacement of the ARICH photo-sensors. Silicon photomultipliers are one of the candidates. Due to its sizeable dark count rates and their sensitivity to neutrons – we expect fluences of up to 5x10¹²n/cm2 - such a device requires to read out the signals in a narrow time window of several ns, requiring optimized SiPM design and high integration with the read-out electronics. In the presentation, we will present a SiPM module design, a study of

Possible improvements in signal to noise ratio:

• operating the sensor at a lower temperature

- Cooling system might be a problem :
 - due to material budget (ARICH in front of electromegnetic calorimeter) increased system complexity
- □ smaller ring image area
- narrower time window (fast timing electronics)

□ use of light collection system (light guides) to increase effective area of the sensor

Use of irradiated SiPMs at room temperature very challenging.

In the context of EC Horizon 2020 AIDAinnova innovation pilot we are studying the SiPMs with improved radiation resistance.

□ The impact of the radiation on the performance is much worse in the single photon detection regime.

Objectives we are addressing:

SiPM design : Review the production process, change of the design and production • Reduction of a cross-talk and after-pulses • Use of smaller area SiPMs

□ Integration of the readout electronics with the sensor: • TSV interconnects with the ASIC • Signal Processing in the front end

Light collection:

• Focus light from e.g. 3x3mm2 to 1x1mm2

Recovery of the operation at lower temperatures – annealing

Goal : Improve robustness under neutron irradiation, while maintaining low cost

• high efficiency & good time resolution

Systematic study of neutron irradiated SiPMs at different temperatures Study the dark-count noise performance at different temperatures.

I-V at 25 ,0 and -30 °C

Broadcom AFBR-S4N44C013

Experimental setup

- Probe station to measure:
- IV curves

Fluence

No single photo-electron signals observed due to high DCR and baseline shift

T=-196 °C

Dry Cryogenic container

I-V curves @ low temperatures

Irradiated samples

Irradiation @ TRIGA nuclear reactor at Jožef Stefan Institute, Ljubljana

Tests at Liquid Nitrogen Signal is restored
 Image
 Image

 Mean
 0.02313

 RMS
 0.01375

 Underflow
 0

 Overflow
 275

 Integral
 9.927e+004
 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Light collection

use of light collection system to increase effective area of the sensor.

Readout electronics

FASTIC current mode ASIC

- 8 Inputs: 8 Single Ended (positive or negative) or 4 differential. 4/8 Outputs: CMOS, LVDS and Analog. Summation in clusters of 4 channels.

- Energy: Linear Time over Threshold with high dynamic range. Different trigger levels and cluster trigger for monolithic crystals.

Parameter	Value
Technology	65 nm CMOS
	~ 9 mW/ch in SE mode (V _D
Power consumption	mW/Input Stage). About 6
Number of channels	8 SE / 4 DIFF
Connection Type	Configurable SE (Pos/Neg p
	~ 30 ps _{rms} SPTR (330 pF 3x3
Electronics Time Jitter	1.2 nH)
Energy Resolution	Linear (~ 2.5 % Linearity er
Dynamic Range	5 uA - 20 mA
	~ 2 MHz (Linear ToT readou
Maximum Rate	dependent)
Testing and	
Calibration	Yes
Interface	I2C (compatible with picoT
	Configurable Digital (single
Output	Analog output (10 pF load)

First prototzpe ASIC produced in 2020

- □ Initial tests of the ASIC showed that the ASIC is working.
- modes are working (SLVS, CMOS, Analog) are working.
- non-linear ToT response.

Shaper Charge Measurement Sensor: S13360-3050CS (Hamamatsu)

First prootype submitted May 20th 2020: 8 ch (6 to 12mW/ch depending on operational mode). Final chip: Expected 32 channels.

			tt		11	-
	10		18	11		
				ŧ1		
	14		18	11		
CONTRACTOR OF A CONTRACT		÷Ħ	18			

e-ended CMOS or differential SLVS) or

□ Main functionalities: Input modes (POS, NEG, DIFF, SUM) and output The ASIC response well for fast signals (of about 3 ns FWHM) using the

More electrical tests will be performed in the incoming months.

SPTR - HV = 60.0V, Global Threshold = 2, T \approx 23°C