Cryogenic detector system for background-free Muonium observation at temperatures below 200 mK

Technology and Instrumentation in Particle Physics 2021
24 – 28 May, (Virtual) Vancouver

Presented by
Jesse Zhang
Low Energy Particle Physics Group
ETH Zürich, Switzerland
Muonium gravity experiment

Test weak equivalence principle using second generation leptonic antimatter

Mu beam
- μ^+ to vacuum Mu conversion
- low emittance
- narrow momentum distribution

Interferometry
- 3-grating interferometer
- gravitational interaction shifts interference pattern

Detection
- coincidence signal of e^+ from μ^+ decay and atomic e^-
Novel atomic Mu beam from SFHe

- Mu source based on SFHe
 - Mu gravity experiment requires novel Mu beam with low emittance and narrow momentum distribution

- Mu detection
 - Triple coincidence of horizontally emitted e⁺ in two e⁺ detectors plus signal in atomic e⁻ detector:
 - e.g.: LC4 && LF4 && atomic

Detector requirements:
- Fast timing
- High efficiency
- High background rejection
- Operation in cryogenic setup at T < 200 mK
SiPM operation in dilution cryostat

- SiPM: Hamamatsu S13370-3075CN/-6075CN
 - Pixel pitch: 75 \(\mu \text{m} \), active area: 3x3 / 6x6 mm\(^2\)
 - originally for LXe, LAr scintillation (UV sensitive)
 - no window

- wiring with \(~ 7\) m long micro coax cable
 - AWG-38, \(\phi \) 0.4 mm, 50 \(\Omega \)
 - comprising between heat load & signal quality
 - thermalized at 3 temperature stages
 - 40dB pre-amplifier
 - DRS4 digitizer

- \(\dot{Q} \sim 100 \mu\text{W} \)
- Cu blocks for thermalization of cable

- cryostat cold finger
- \(~ 100\) K
- \(~ 10\) K
- \(~ 2\) K
- \(< 0.2\) K
- \(1.7\) K
- pre-amplifier
- digitizer
Cryogenic SiPM: Electrical characterization

- Measure reverse IV curve under low light condition
 - linear increase up to V_{bd}, then quadratic increase
 - steeper increase after V_{bd} at low temperature
- Determine V_{bd} from
 - logarithmic derivative: Landau fit
 - gain v.s bias: linear fit
Cryogenic SiPM: Operating range

- Non-linear V_{bd} at cryogenic temperatures
- explained by Baraff’s model:
 - see C. R. Crowell et al., Appl. Phys. Lett. 9, (1966)

- No proper operation between 20 K and 40 K
- V_{over} limited to ~ 2 V at ultra low temperatures
Cryogenic SiPM: Single photon detection

- Measure charge spectrum under low light condition
 - Photon from WLS fibre coupled to pulsed LED
- Poisson fit to estimate detected of photons
- Compare low temperature measurement to room temperature measurement

Single photon counting possible at ultra low temperatures
Commissioning with μ^+ beam

- Test detectors with muon beam at PSI
- e^+ energy from Michel spectrum

![Diagram showing detector components and Michel decay spectrum](image.png)
Positron detectors

- Plastic scintillator bars
 - Eljen EJ-204, l: 20 mm, h: 3 mm, w: 2-4 mm
 - wrapped with Teflon
 - no optical cement (teared wire bonds)
 - 3D printed acrylic sleeves

- Energy deposition in thin absorber: Landau distributed
- Lower gain in cryogenic but full peak visible
Atomic e^- detector: Design

- **Goal:**
 - Remove muon background in positron detectors
 - Coincidence detection of e^+ from μ^+ decay and atomic e^-

- **Method:**
 - Use HV electrode to accelerate e^- to scintillator pill
 - Detect low energy (< 10 keV) electrons
Atomic \(e^- \) detector: Energy and time spectrum

- Operate atomic \(e^- \) detector w/ and w/o acceleration electrode ring
- Detection of high energetic \(e^+ \) from Michel decay
- Detection of accelerated \(e^- \) liberated from Cu walls
- Atomic \(e^- \) can be detected in the cold

Michel \(e^+ \) and low energy \(e^- \) detection feasible at ultra low temperatures
Summary & Outlook

- Muonium gravity experiment aims to measure gravitational interaction of second generation, leptonic antimatter
- Novel Mu beam is being developed together with cryogenic detection scheme

- Hamamatsu VUV4 SiPMs found to be operational at $T > 40$ K and $T < 20$ K
- SiPMs can be operated in dilution cryostat, at < 200 mK temperatures
- Single photon counting possible at $T < 1$ K
- Commissioned positron detector with muons

- Stable operation of atomic e^- detector and physics run in September 2021
Backup
Mu formation in SFHe

present state-of-art Mu source
- porous SiO₂ structures
- 3 - 30 % vacuum Mu conversion
- thermal beam
 - large momentum distribution
 - wide angular distribution

proposed SFHe Mu source
- superfluid ⁴He
- based on high chemical potential of H isotopes Mu expected to be ejected with ~7 mm/μs velocity

high quality Mu beam
- with SFHe source: fast atomic beam with defined direction and energy
Cryogenic SiPM: Signal shape at low temperatures

- waveform has two main components
 - fast rising: cell capacitance
 - slow falling: quenching resistor R_Q
- Metallic quenching resistor with lower temperature dependence
 - Maintain pulse shape
- Increase of R_Q below 80 K leads to narrower waveform
Hamamatsu S13370 series (VUV4)

<table>
<thead>
<tr>
<th></th>
<th>S13370-3075 CN</th>
<th>S13370-6075 CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitive area / mm²</td>
<td>3.0 x 3.0</td>
<td>6.0 x 6.0</td>
</tr>
<tr>
<td>Pixel pitch / μm</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Geo. fill factor / %</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>package</td>
<td></td>
<td>ceramic</td>
</tr>
<tr>
<td>window</td>
<td></td>
<td>unsealed</td>
</tr>
<tr>
<td>Response range / nm</td>
<td>120 – 900</td>
<td></td>
</tr>
<tr>
<td>Photon detection efficiency / %</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Operating voltage / V</td>
<td>V_{bd} + 4</td>
<td></td>
</tr>
<tr>
<td>Dark count / Mcps</td>
<td>1.0 - 3.0</td>
<td>4.0 - 12.0</td>
</tr>
<tr>
<td>Gain</td>
<td></td>
<td>5.8 x 10^6</td>
</tr>
</tbody>
</table>

See: www.hamamatsu.com, S13370 series product datasheet (2017)