Cryogenic detector system for background-free Muonium observation at temperatures below 200 mK

Technology and Instrumentation in Particle Physics 2021 24 – 28 May, (Virtual) Vancouver

> Presented by Jesse Zhang Low Energy Particle Physics Group ETH Zürich, Switzerland

Muonium gravity experiment

μ⁺ e⁻ *g*?

Test weak equivalence principle using second generation leptonic antimatter

Mu beam

- μ⁺ to vacuum Mu conversion
- low emittance
- narrow momentum distribution

Interferometry

- 3-grating interferometer
- gravitational interaction shifts interference pattern

Detection

 coincidence signal of e⁺ from μ⁺ decay and atomic e⁻

Novel atomic Mu beam from SFHe

- Mu source based on SFHe
 - Mu gravity experiment requires novel Mu beam with low emittance and narrow momentum distribution

Mu detection

- Triple coincidence of horizontally emitted e⁺ in two e⁺ detectors plus signal in atomic e⁻ detector:
- e.g.: LC4 && LF4 && atomic

- Fast timing
- high efficiency
- high background rejection
- Operation in cryogenic setup at T < 200 mK

EHzürich

SiPM operation in dilution cryostat

- SiPM: Hamamatsu S13370-3075CN/-6075CN
 - Pixel pitch: 75 μ m, active area: 3x3 / 6x6 mm²
 - originally for LXe, LAr scintillation (UV sensitive)
 - no window
- wiring with ~ 7 m long micro coax cable
 - AWG-38, Ø 0.4 mm, 50 Ω
 - comprising between heat load & signal quality
 - thermalized at 3 temperature stages
 - 40dB pre-amplifier
 - DRS4 digitizer

EHzürich

Cryogenic SiPM: Electrical characterization

- Measure reverse IV curve under low light condition
 - linear increase up to $V_{\rm bd}$, then quadratic increase
 - steeper increase after V_{bd} at low temperature
- Determine V_{bd} from
 - logarithmic derivative: Landau fit
 - gain v.s bias: linear fit

2

1

0

41.5

42.0

42.5

V_{bias} [V]

• $V_{bd} = 41.8 \text{ V}$

43.5

43.0

ETH zürich

Cryogenic SiPM: Operating range

- Non-linear V_{bd} at cryogenic temperatures
- explained by Baraff's model:
 - see C. R. Crowell et al., Appl. Phys. Lett. 9, (1966)

- No proper operation between 20 K and 40 K
- V_{over} limited to ~ 2 V at ultra low temperatures

ETH zürich

Cryogenic SiPM: Single photon detection

Single photon counting possible at ultra low temperatures

- Measure charge spectrum under low light condition
 - Photon from WLS fibre coupled to pulsed LED
- Poisson fit to estimate detected of photons
- Compare low temperature measurement to room temperature measurement

ETH zürich

Commissioning with $\mu^{\text{+}}$ beam

- Test detectors with muon beam at PSI
- e⁺ energy from Michel spectrum

Positron detectors

- Plastic scintillator bars
 - Eljen EJ-204, I: 20 mm, h: 3 mm, w: 2-4 mm
 - wrapped with Teflon
 - no optical cement (teared wire bonds)
 - 3D printed acrylic sleeves

- Energy deposition in thin absorber: Landau distributed
- Lower gain in cryogenic but full peak visible

Atomic e⁻ detector: Design

- Goal:
 - Remove muon background in positron detectors
 - coincidence detection of e⁺ from μ⁺ decay and atomic e⁻
- Method:
 - Use HV electrode to accelerate e⁻ to scintillator pill
 - Detect low energy (< 10 keV) electrons

Atomic e⁻ detector: Energy and time spectrum

- Operate atomic e⁻ detector w/ and w/o acceleration electrode ring
- Detection of high energetic e⁺ from Michel decay
- Detection of accelerated e⁻ liberated from Cu walls
- Atomic e⁻ can be detected in the cold

Michel e⁺ and low energy edetection feasible at ultra low temperatures

Summary & Outlook

- Muonium gravity experiment aims to measure gravitational interaction of second generation, leptonic antimatter
- Novel Mu beam is being developed together with cryogenic detection scheme
- Hamamatsu VUV4 SiPMs found to be operational at T > 40 K and T < 20 K</p>
- SiPMs can be operated in dilution cryostat, at < 200 mK temperatures</p>
- Single photon counting possible at T < 1 K
- Commissioned positron detector with muons
- Stable operation of atomic e⁻ detector and physics run in September 2021

EHzürich

Mu formation in SFHe

present state-of-art Mu source

- porous SiO₂ structures
- 3 30 % vacuum Mu conversion
- thermal beam
 - large momentum distribution
 - wide angular distribution

proposed SFHe Mu source

- superfluid ⁴He
- based on high chemical potential of H isotopes Mu expected to be ejected with ~7 mm/µs velocity

high quality Mu beam

 with SFHe source: fast atomic beam with defined direction and energy

E *H* zürich

Cryogenic SiPM: Signal shape at low temperatures

- waveform has two main components
 - fast rising: cell capacitance
 - slow falling: quenching resistor R_Q
- Metallic quenching resistor with lower temperature dependence
 - Maintain pulse shape
- Increase of R_Q below 80 K leads to narrower waveform

Hamamatsu S13370 series (VUV4)

	S13370-3075 CN	S13370-6075 CN
Sensitive area / mm ²	3.0 x 3.0	6.0 x 6.0
Pixel pitch / μm	75	
Geo. fill factor / %	70	
package	ceramic	
window	unsealed	
Response range / nm	120 – 900	
Photon detection efficiency / %	40	
Operating voltage / V	V _{bd} + 4	
Dark count / Mcps	1.0 - 3.0	4.0 - 12.0
Gain	5.8 x 10 ⁶	

see: www.hamamatsu.com, S13370 series product datasheet (2017)