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Introduction
• Silicon Photomultipliers (SiPMs) are arrays of 103–104 

single photon avalanche diodes (SPADs) 

• SPADs are silicon P-N junctions operated at reverse 
bias voltages beyond avalanche breakdown—i.e. in 
‘Geiger mode’ 

• A single photon will generate a charge avalanche large 
enough to quench any given SPAD 

• Photon counting is done by counting the number of 
SPADs in the SiPM that generate an avalanche
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• Silicon Photomultipliers (SiPMs) are arrays of 103–104 
single photon avalanche diodes (SPADs) 

• SPADs are silicon P-N junctions operated at reverse 
bias voltages beyond avalanche breakdown—i.e. in 
‘Geiger mode’ 

• A single photon will generate a charge avalanche large 
enough to quench any given SPAD 

• Photon counting is done by counting the number of 
SPADs in the SiPM that generate an avalanche

• Photon emission is known to occur 
during avalanche process in 
semiconductors

• Photons produced this way that 
escape the SiPM can trigger an 
avalanche in another SiPM—called 
external cross-talk
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Introduction
• Silicon Photomultipliers (SiPMs) are arrays of 103–104 

single photon avalanche diodes (SPADs) 

• SPADs are silicon P-N junctions operated at reverse 
bias voltages beyond avalanche breakdown—i.e. in 
‘Geiger mode’ 

• A single photon will generate a charge avalanche large 
enough to quench any given SPAD 

• Photon counting is done by counting the number of 
SPADs in the SiPM that generate an avalanche
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γ

• Photons produced this way that 
escape the SiPM can trigger an 
avalanche in another SiPM—called 
external cross-talk

• Photons can also trigger avalanches in 
neighbouring SPADs—called  
internal cross-talk

• Photon emission is known to occur 
during avalanche process in 
semiconductors
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Motivation
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• Internal cross-talk is measured by pulse counting—see nEXO VUV4 characterization 
paper (arXiv e-print: 1903.03663) 

• Measuring emission spectra will aid understanding internal cross-talk through 
modelling 

• Also inform future SiPM designs to mitigate internal cross-talk

DOI: 10.14288/1.0396697
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Motivation
• Multiple next-generation astroparticle physics 

experiments will use SiPMs to probe SM and 
BSM interactions

High-precision neutrino oscillation 
measurements using liquid argon TPC Dual phase, liquid argon based search 

for Dark Matter

Search for neutrinoless double  
beta-decay using liquid xenon
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MIEL Apparatus 
Microscope

Spectrometer

Camera Microscopy with Injected and Emitted Light

• Primary components:  

• Olympus IX83 microscope 
• Princeton Instruments HRS 300 spectrometer 
• PyLoN 400BR_eXcelon CCD camera
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MIEL Apparatus 
Microscope

Spectrometer

Camera Microscopy with Injected and Emitted Light

• Primary components:  

• Olympus IX83 microscope 
• Princeton Instruments HRS 300 spectrometer 
• PyLoN 400BR_eXcelon CCD camera 

• Motorized control over objective lens in Z-axis 
and SiPM position in X-Y plane
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MIEL Apparatus 
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Camera Microscopy with Injected and Emitted Light

• Primary components:  

• Olympus IX83 microscope 
• Princeton Instruments HRS 300 spectrometer 
• PyLoN 400BR_eXcelon CCD camera 

• Motorized control over objective lens in Z-axis 
and SiPM position in X-Y plane 

• Image focusing done with halogen lamp on 
SiPM and microscope camera
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MIEL Apparatus 
Microscopy with Injected and Emitted Light

• Primary components:  

• Olympus IX83 microscope 
• Princeton Instruments HRS 300 spectrometer 
• PyLoN 400BR_eXcelon CCD camera 

• Motorized control over objective lens in Z-axis 
and SiPM position in X-Y plane 

• Image focusing done with halogen lamp on 
SiPM and microscope camera 

• CCD camera coupled to output of the 
spectrometer is used for data acquisition 

• Entire apparatus is inside a light-proof 
enclosure, controlled externally using 
LightField® software 

Microscope

Spectrometer

Camera

mailto:joseph.mclaughlin.2018@live.rhul.ac.uk


Joseph McLaughlin joseph.mclaughlin.2018@live.rhul.ac.uk
13

SiPM Characteristics
Hamamatsu VUV4

Area: 3x3 mm2

SPAD width: 50 µm

Fill factor: 60%

FBK VUV-HD3

Area: 6x6 mm2 

SPAD width: 35 µm

Fill factor: 80%

Hamamatsu VUV4 SiPM at 20x Magnification FBK VUV-HD3 SiPM at 20x Magnification
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SiPM Characteristics
Hamamatsu VUV4

Area: 3x3 mm2

SPAD width: 50 µm

Fill factor: 60%

FBK VUV-HD3

Area: 6x6 mm2 

SPAD width: 35 µm

Fill factor: 80%

FBK VUV-HD3 SiPM at 4x Magnification (composite image)Hamamatsu VUV4 SiPM at 4x Magnification (composite image)

RMS of emission fluctuations is 
3.3x greater for VUV4
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SiPM Characteristics
Hamamatsu VUV4

I-V Curves for the Hamamatsu VUV4 and FBK VUV-HD3 SiPMs

FBK VUV-HD3

VBR = 52±1 V
VBR = 31±1 V
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SiPM Characteristics
Hamamatsu VUV4

I-V Curves for the Hamamatsu VUV4 and FBK VUV-HD3 SiPMs

FBK VUV-HD3

VBR = 52±1 V
VBR = 31±1 V

Typical operation 
range: 3–6 V

Our measurement 
range: 10–12 V
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Calibration

Wavelength calibrations done using 
LightField® IntelliCal system, mercury 
vapour lamp, and neon-argon gas lamp

Efficiency calibrated using estimated 
transfer function from hardware specs; 
validated with IntelliCal intensity source
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Normalization

• Calculate the ratio of integrated counts in Region 1 to Region 2—this indicates the 
proportion of all photons coming from the local area in the 20x magnification 

• Calculate the ratio of integrated counts in Region 2 (zoomed) to Region 3—this indicates 
the proportion of local photons contained within the spectrometer slit 

• The surface area emission profile correction is the product of these two ratios

R1 R2

R2

R3
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Results

• Spectra are normalized by using ADC information from manufacturer, set 
exposure time, total SiPM charge integrals, and spatial emission profiles of each 
SiPM 

• Both SiPMs predominantly glow in NIR; FBK spectrum consistent with thin film 
interference from SiO2 layer of order 10-6 m thick 

• Hamamatsu VUV4 emitting ~2x as many photons as FBK VUV-HD3

FBK VUV-HD3 Emission Spectrum Hamamatsu VUV4 Emission Spectrum
PRELIMINARY PRELIMINARY
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Results

• Correction for numerical aperture further scales yields by at least 270; more likely 
300–400 when accounting for all geometric and optical effects 

• Single charge carrier gain in avalanche process is on the order of 106 

• Gives a total yield of ~6–7 photons per avalanche from HPK VUV4 and ~3–4 for 
FBK VUV-HD3 in the relevant overvoltage ranges

FBK VUV-HD3 Hamamatsu VUV4
Overvoltage 

[V]
Photon Yield  
(x10-8) [        ]

Mean Photons 
per Avalanche*

Overvoltage 
[V]

Photon Yield  
(x10-8) [        ]

Mean Photons 
per Avalanche*

12.8 ± 1.0 1.462 ± 0.002 4 11.0 ± 1.0 2.588 ± 0.002 7

12.4 ± 1.0 1.285 ± 0.003 3 10.8 ± 1.0 2.514 ± 0.006 7

12.1 ± 1.0 1.168 ± 0.003 3 10.7 ± 1.0 2.457 ± 0.002 6

γ/e− γ/e−

Order of magnitude estimate assuming charge avalanche 
gain of 106 

*

+2

-1

+2

-1

+2

-1

+2

-1

+2

-1

+2

-1
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Conclusion
• MIEL is capable of producing high resolution images and spectroscopic 

measurements of SiPM avalanche photon emission 
• Hamamatsu VUV4 has a highly non-uniform light emission profile over its surface area, 

FBK VUV-HD3 emits half as many photons as VUV4  
• External cross-talk rates can be determined with spectra shown here and photon 

detection efficiency vs. wavelength 
• Knowing emission spectra of SiPMs informs modelling of light production; helps with 

understanding external and internal cross-talk, and future SiPM designs 

• Paper submission for external cross-talk characterization is imminent  
• NIST-traceable radiometric calibration of MIEL apparatus will significantly reduce 

systematic uncertainties 
• Laser-induced avalanche measurements will begin soon; aiming for publication by mid 

summer 2021

Concluding Remarks

Future Developments
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Numerical Aperture
Numerical Aperture Correction
• The numerical aperture, NA, of an optical 

system defines the acceptance half-angle, 
, of incident photons given a local index 

of refraction, n (in this case, atmosphere) 

• Light passes through silicon then into air; 
acceptance angle within silicon transforms 
according to Snell’s law 

• Correction factor, CF, can be approximated 
by finding ratio of 4π steradians to solid 
angle within acceptance angle in silicon 

• This correction factor must be a lower 
bound—geometry and optics are simplified 

• For NA ≈ 0.45 and n = 1

θAcc

NA = natm sin θAcc

natm ≈ 1

nSi ≈ 3.7

θAcc

θSi

NA = natm sin θAcc = nSi sin θSi

CF ≳
4π

2π ∫ θSi

0
sinθ dθ

CF ≳
4π

2π ∫ 7∘

0
sinθ dθ

≈ 270
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Internal Cross-Talk

• Avalanches are triggered by charge carriers in the active region, which can be generated 
via photon or can diffuse in thermally from elsewhere (i.e. dark noise) 

• Internal cross-talk falls into two categories: 
1. Emitted photon directly reflects into neighbouring SPAD active region (prompt cross-talk)


2. Emitted photon generates a charge carrier elsewhere, which subsequently diffuses into a 
neighbouring SPAD active region (delayed cross-talk)

Active
region

Photon

Primary Pulse

Reflection

Carrier
production
and diffusion

CT-P CT-D
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Light Production

• Light production mechanism is thought to be predominantly from electron-
hole recombination in various forms 

• Bremsstrahlung has been proposed as a higher energy contribution to 
light production 

• The combined photon spectrum also depends heavily upon impurity 
content and concentration within the silicon, electric field profile, reverse 
bias voltage, etc.

DOI: 10.1109/16.760412
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