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The Silicon Photomultiplier or G-APD

Can the SiPM concept be transferred to GaN?

MEPhI/Pulsar SiPM 2004
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Why GaN?

Large bandgap

Tunable bandgap -> tunable spectral response

Potential for high UV-VUV sensitivity with little 
to no red sensitivity

Sufficiently clean substrates are available

Geiger-mode is possible

Increasing use of GaN in high-power 
electronics, LEDs, Lasers

Increasing supply of GaN-substrates

Cleaner substrates

Lower cost
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The GaN Technical and Intellectual Challenge
Geiger-mode in GaN is unexplored

Breakdown probability?

Temperature dependencies?

Electric field dependencies?

Quenching?

Device Fabrication

Uniform breakdown characteristics

Low dark-count rates

Scalability

Arrays

...

Spectral response of a 82 um-dia.  Georgia Tech GaN APD
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Georgia Tech GaN Structures

epitaxial growth

surface roughness:

Growth on:  u-GaN/sapphire      n-GaN bulk substrate

Avalanche region

https://doi.org/10.1117/12.2576888
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IV-Curves

Uniform dark current characteristics
Uniform light response

36 diode array of 60 um cells

https://doi.org/10.1117/12.2576888



Nepomuk Otte 7

Breakdown Voltage Uniformity

Uniform breakdown characteristics (<1% variations)
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Breakdown Voltage vs. Temperature

Breakdown voltage shifts 
0.02%/K (SiPMs 0.1%/K)
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Geiger Mode Measurements

New territory
-> Develop setups from scratch 

bias pulse

dark-count breakdown
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Count Rate Measurements
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Dark-Count Rates

Temperature range -40°C – 20°C

Overvoltages 0.5 V - 4 V

Dark count rates (DCR) > 10 MHz

High dark-count rate prevents operation at higher overvoltages (cf. early SiPMs)
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Dark-Count Rates

Temperature range -40°C – 0°C

Overvoltages 0.5 V - 4 V

Dark count rates (DCR) > 10 MHz

Activation energies ~0.2 eV -> 
DCR dominated by trap-assisted 
tunneling (Poole-Frenkel)

High dark-count rate prevents operation at higher overvoltages (cf. early SiPMs)
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Dark-Count Rates

Temperature range -40°C – 0°C

Overvoltages 0.5 V - 4 V

Dark count rates (DCR) > 10 MHz

Activation energies ~0.2 eV -> 
DCR dominated by trap-assisted 
tunneling (Poole-Frenkel)

High dark-count rate prevents operation at higher overvoltages (cf. early SiPMs)
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Photon Detection Efficiency: Setup

GaN 
APD

100nF

47kΩ

Noninverting 
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Transimpedance 
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Bifurcated Fiber
UV light 
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Si Photon 
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Attenuator
UV LED 
375nm

Thermoelectric 
cooler

Water cooling 
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Photon Detection Efficiency

375 nm

45% QE

~1% breakdown probability at 4V overvoltage (~5% above breakdown voltage)

Operation at higher overvoltages will result in higher breakdown probabilities
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Next Steps
 Reduce DCR -> Eliminate Poole-Frenkel tunneling

 Impurity states in “intrinsic layer”

 Residual crystalline defects

 Growth studies have shown we can reduce “unintentional 
impurities” in the avalanche region

 Employ low-defect III-N substrates

 Further studies of ion-implantation

 AlGaN “window” for better UV sensitivity

 Back-side illumination designs

 Selective etching for substrate removal

 Provides for “flip-chip” mounting to Si bias/readout 
circuit Light

(after substrate removal)
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Summary
GaN G-APDs have the potential for high (V)UV sensitivity.

We succeeded in operating GaN diodes in Geiger mode.

All things considered the results are very encouraging.

High DCR prevents operation at high breakdown probability.

Device can only operate <5% above breakdown -> latest SiPMs operate 10%-20% above 
breakdown -> lots of room for improvement.

Identified trap assisted tunneling as dominant DCR mechanism.

The situation is very similar to early silicon SPADs and SiPMs.

No fundamental limitations identified.

The same methodology that improved SiPM characteristics can also improve GaN.

Look forward to our next generation of GaN SPADs.
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