RECENT PROGRESS ON DEVELOPMENT OF MCP-PMT AT ARGONNE NATIONAL LABORATORY

JUNQI XIE

Medium Energy Physics
Argonne National Laboratory
9700 S Cass Ave., Lemont, IL 60439
ARGONNE MCP-PMT FOR EIC-PID

The **Electron-Ion Collider (EIC)** demands excellent particle identification (PID) over a wide range of momenta. Cherenkov (RICH) detectors are essential for high momenta PID.

Key Issue: Photosensors

- **Photo Detectors**: The most important challenge is to provide a low-cost, highly-pixelated photosensor working in the high radiation and high magnetic field environment.
- This problem is not yet solved.

- **Large-Area Picosecond PhotoDetector (LAPPD)**
 - Promising but still not fully applicable for EIC needs.

- Optimize LAPPD design relying on ANL MCP-PMT fabrication and characterization expertise
 - Magnetic field tolerance
 - Fine pixel readout
 - Fast timing

R&D testbed: 6x6 cm²
@ ANL

Commercialization: 20x20 cm²
@ Industrial partner (Incom, Inc.)

An order of magnitude lower price per active area comparing to current commercial MCP-PMTs.
a) Full glass/fused silica design with mature fabrication process and low-cost;

b) Fused silica (or borosilicate glass with wavelength shifter) window extending sensitivity down to UV range for better Cherenkov light detection;

c) Newly developed small pore size MCPs for higher magnetic field tolerance and fast timing;

d) Reduced spacing internal geometry further improves the magnetic field tolerance and timing resolution;

e) Capacitively coupled electronic readout through glass/fused silica for pixelated readout scheme.
Optimization of biased voltages for both MCPs: version 1 -> 2
Smaller pore size MCPs: version 2 -> 3
Reduced spacing: version 3 -> 4
Further improvement if needed:
Smaller pore size: 6 μm, version 4 -> 5 (future if required)
DETAILED PARAMETERS AND PERFORMANCE OF ARGONNE MCP-PMT

ANL low-cost MCP-PMT with 10 μm pore size MCPs and reduced spacing

<table>
<thead>
<tr>
<th>MCP</th>
<th>Pore size</th>
<th>10 μm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Length to diameter ratio</td>
<td>60:1</td>
</tr>
<tr>
<td></td>
<td>Thickness</td>
<td>0.6 mm</td>
</tr>
<tr>
<td></td>
<td>Open area ratio</td>
<td>70 %</td>
</tr>
<tr>
<td></td>
<td>Bias angle</td>
<td>13°</td>
</tr>
<tr>
<td>Detector geometry</td>
<td>Window thickness</td>
<td>2.75 mm</td>
</tr>
<tr>
<td>Spacing 1</td>
<td>2.25 mm</td>
<td></td>
</tr>
<tr>
<td>Spacing 2</td>
<td>0.7 mm</td>
<td></td>
</tr>
<tr>
<td>Spacing 3</td>
<td>1.1 mm</td>
<td></td>
</tr>
<tr>
<td>Shims</td>
<td>0.3 mm</td>
<td></td>
</tr>
<tr>
<td>Tile base thickness</td>
<td>2.75 mm</td>
<td></td>
</tr>
<tr>
<td>MCP-PMT stack</td>
<td>Internal stack height</td>
<td>5.55 mm</td>
</tr>
<tr>
<td></td>
<td>Total stack height</td>
<td>11.05 mm</td>
</tr>
<tr>
<td>Gain</td>
<td>Gain</td>
<td>2.0×10^7</td>
</tr>
<tr>
<td>Time</td>
<td>Rise time</td>
<td>394 ps</td>
</tr>
<tr>
<td>Characteristic</td>
<td>TTS RMS time resolution</td>
<td>88.6 ps</td>
</tr>
<tr>
<td></td>
<td>TTS resolution</td>
<td>35 ps</td>
</tr>
<tr>
<td>Magnetic Field</td>
<td>Magnetic field tolerance</td>
<td>Over 1.5 T</td>
</tr>
</tbody>
</table>

RMS = 88.6 ps
$\sigma_{TTS} = 34.9$ ps

$\sigma_{RMS} < 100$ ps

critical for hpDIRC

B > 1.5 Tesla

J. Xie et al 2020 JINST 15 C04038

JUNQI XIE
FINE PIXELATED READOUT THROUGH GLASS/FUSED SILICA ANODE

Argonne MCP stack (glass anode) in Fermilab test beam

MWPC tracking used

4 different pixel sizes (2x2, 3x3, 4x4 and 5x5 mm2) implemented for testing
4 mm x 4 mm pixel as example

- All resolutions ~1 mm with small pixels, reaching the requirements for EIC Cerenkov sub-systems.
- Potentially limited by track pointing resolution capability of MWPCs (1 mm pitch)
- 2x2 may be worse due to leakage of signals (poor containment since it is a smaller area)
NEW ARGONNE 10X10 CM² MCP-PMT FABRICATION SYSTEM

✓ Large practically applicable device size: designed for 10x10 cm²
✓ High and uniform QE: uniform heating and substrate rotate mechanism

Construction is currently undergoing.
Aim to complete commissioning of the full system within FY21.

Beneficial projects:
- Pixelated, magnetic field tolerant MCP-PMT for Electron ion collider;
- Radio-pure MCP-PMT for Neutrino less double beta decay;
- Pixelated, fast timing MCP-PMT for Medical isotope detection;
- ……
CURRENT STATUS OF LAPPD COMMERCIALIZATION

The Argonne R&D results were adapted by Incom for LAPPD commercialization: 20x20 cm²

Gain & Timing

Gen-I LAPPD with stripline readout

Gen-II LAPPD with pixel readout

Gain: 4×10^6 with MCP HV @ 900V

σ (TTS) = 64 psec
EXPLORE APPLICATION OF LAPPDTM FOR NUCLEAR PHYSICS PARTICLE IDENTIFICATION

SoLID
SoLID (Solenoidal Large Intensity Device) Light gas Cherenkov counter

EIC
JLEIC: mRICH, hpDIRC and dRICH; TOPSiDE: gaseous-RICH
TEST OF GEN-I STRIPLINE LAPPD AT JLAB

Received Gen-I LAPPD

<table>
<thead>
<tr>
<th>Window material</th>
<th>Fused silica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Readout anode</td>
<td>Inside stripline</td>
</tr>
<tr>
<td>Quantum Efficiency</td>
<td>Mean: 7.3%, Maximum: 11%</td>
</tr>
<tr>
<td>Gain</td>
<td>5.4×10^6 with MCPs @ 975V</td>
</tr>
<tr>
<td>Time resolution</td>
<td>56 ps</td>
</tr>
</tbody>
</table>

Experimental high rate background environment

Detector package:
- Cherenkov tank (CO$_2$ at 1 atm)
- Scintillator planes
- Calorimeter blocks
- Photosensors: LAPPD or 4x4 MaPMTs

The first JLab Hall C test shows that the LAPPD might work in the Hall C harsh environment to separate Cherenkov events.

Needs high QE, pixelated LAPPDs for follow up testing.

Ref: C. Peng et al., arXiv:2011.11769

JUNQI XIE
The 2nd JLab Hall C confirms that the LAPPD works at high rate environment.
With pixelized readout, utilizing geometrical information of pixels could improve the separation.
R&D on optimization of MCP-PMT towards particle identification is ongoing, focusing on design development:
- Magnetic field tolerance
- Timing resolution
- Pixel readout

MCP-PMT with smaller pore size and reduced spacing exhibits significantly improved magnetic field tolerance and timing resolution.

Fine pixel of 3x3 mm2 with position resolution of ~1 mm was achieved with Argonne MCP stack (glass anode) in Fermilab test beam.

Large area picosecond photodetector (LAPPD$^\text{TM}$) adapting the R&D was under commercialization with performance comparable to MCP-PMTs in market.

Tests of the LAPPDs at JLab show encouraging results for their application in nuclear physics programs.
ACKNOWLEDGMENTS

Argonne National Laboratory, Argonne, IL, 60439

A. Camsonne, J.-P. Chen, S. Malace, M. Jones
Jefferson Lab, Newport News, VA, 23606

M. Rehfuss, N. Sparveris
Temple University, Philadelphia, PA, 19122

M. Paolone
New Mexico State University, Las Cruces, NM 88003

B. Azmoun, M. Chiu, A. Kiselev, G. Woody
Brookhaven National Laboratory, Upton, NY, 11973

M. Aviles, T. Cremer, M. Foley, C. Hamel, A. Lyashenko, M. Minot, M. Popecki
Incom, Inc., Charlton, MA 01507

And many others …

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, and Office of Nuclear Physics under contract number DE-AC02-06CH11357 and DE-SC0018445.
Thank you for your attention!

Questions?