# The Dichroicon: A Spectral Photon Sorter



Samuel Naugle



#### Particle Detectors

- SNO, SNO+, Super-K, etc.
  - All large neutrino detectors
  - Detect light from neutrino interactions
- Measured properties
  - Arrival times
  - Number of photons
- Ignored information
  - Wavelength
  - Polarization





## Cherenkov and Scintillation Light

- Detectors often use water or scintillator
  - Must decide between increased energy resolution and light yield vs direction information.
- Difficult to utilize both Cherenkov and scintillation light in a detector
  - Detectors do not measure wavelength
  - Traditional PMTs are cannot resolve the fine time structure that separates the two kinds of light.







#### **Best of Both Worlds**

- Is it possible to retain benefits of a water detector within a scintillation detector?
  - Some proposed methods involve decreasing the light yield of the scintillator.







#### The Dichroicon

- Dichroic filters can be used to sort photons by wavelength
  - Separate Cherenkov and scintillation light decreasing the light yield of the scintillator.





Phys. Rev. D 101, 072002 - Published 15 April 2020



#### Dichroic Filters

- The dichroic filters act as long or shortpass filters
  - But reflect rather than absorb the rejected light.







- Transmittance at 0° incidence and reflection at 15° incidence

## Testing the Dichroicon - Setup

Initial testing of the dichroicon used
 a Sr90 source and target of

LAB + 2g/L PPO

 Measured the efficiency of the dichroicon's ability to separate scintillation and Cherenkov light.







# Testing the Dichroicon - Results

– A fit combining the two time distributions can be used to find the relative concentrations of each kind of light on the aperture PMT.



→ In a prompt time window, Cherenkov photons can be detected with a purity of over 90%.



# Modeling the Dichroicon

- To understand the impact of the dichroicon in large scale scintillation detectors,

the fast optical photon simulation Chroma is being used.







→ Above is a visualization of a 50kT Theia detector. To the left are renderings of dichroicons in Chroma



Contact us if you are interested in using Chroma!

## Impact in Theia-like Detectors

- In this detector, the scintillation and Cherenkov signals can still be separated with great efficiency.
  - Even with orders of magnitude more scintillation light being produced.







## Impact in Theia-like Detectors

- The dichroicon allows detectors to separate the two signals
  - This greatly improves a detectors reconstruction ability, and increases particle ID efficiency.



- $-\cos[\alpha]$  is the cosine of the emission angle of the Cherenkov light relative to the event direction
- 5MeV e<sup>-</sup> uniformly generated within the detector



#### Reconstruction in Theia-like Detectors

– 5MeV e<sup>-</sup> uniformly generated within the detector

 $\mu = -0.009 \pm 0.013$   $\sigma = 0.548 \pm 0.013$  ns  $\mu = 0.5 \pm 2.7$   $\sigma = 112.6 \pm 2.6$  mm → Sub ns time → 20 cm position resolution resolution -300-100-200-4Residual (ns) Fit Position (mm)  $\sigma = 75.6 \deg$ 1.00 **NHits**  $\hat{d}_{true} \cdot \hat{d}_{recon}$  using  $(t_{resid} < 5.0 \text{ ns})$ 



# Looking Ahead

- Work is currently being done to try and fully quantify the impact of dichroicons in large scale particle detectors
  - Through simulation and experiment.
- A dichroicon has been deployed at Berkeley Lab
  - Will probe a more high energy regime using atmospheric muons, opening the door to new applications.







# **Concluding Remarks**

 The dichroicon is a spectral photon sorter that allows large scale particle detectors to separate scintillation and Cherenkov light without drastically reducing the scintillation light yield.

– Work is currently underway to fully characterize the impact of dichroicons in these particle detectors, but current results look promising!



## Acknowledgements

Co-authors: Amanda Bacon, Tanner Kaptanoglu, Joshua Klein, Benjamin Land, Meng Luo, Samuel Young

Dichroicon results:

Phys. Rev. D 101, 072002 – Published 15 April 2020

Super-K event from:

http://www-sk.icrr.u-tokyo.ac.jp/realtimemonitor/

Theia: an advanced optical neutrino detector:

Eur. Phys. J. C 80, 416 (2020)

Chroma github repository:

https://github.com/BenLand100/chroma

Funding through the Department of Energy, Office of High Energy Physics.

Feel free to email me with any additional questions at <a href="mailto:smnaugle@sas.upenn.edu">smnaugle@sas.upenn.edu</a> and thanks for listening!



# Back ups







