

Katja Krüger (DESY)

TIPP 2021 28 May 2021

Outline

Motivation

- Performance
 - Energy resolution
 - Shower Imaging

Highly granular calorimeters beyond Higgs factories

Summary

Motivation

Calorimeters for Particle Flow Algorithms

Design considerations

- Goal at Higgs Factories: want to distinguish Z → jet jet from W → jet jet
- Requires jet energy resolution of $\sigma(E)/E \approx 3-4\%$
- can be reached by particle flow algorithms (PFA)
 - for each particle within a jet: use the subdetector with optimal resolution
 - need to avoid double counting and wrong merging
- need an imaging calorimeter!
- requirements for the calorimeter:
 - highly granular
 - reconstruction of neutral particles: good energy resolution
 - calorimeter has to be within magnet coil: very compact

Technologies for Particle Flow Calorimeters

CALICE:
R&D Collaboration
For Highly Granular
PFA Calorimeters

Absorber material

Readout method

Active technology

Electromagnetic Calorimeter Concepts

Technology Options

Silicon

1024 pixel

Silicon

CALICE SIECAL

Scintillator

CALICE SciECAL

Hadronic Calorimeter Concepts

Technology Options

Scintillator tiles read out by SiPMs

3*3 cm² tiles

Resistive Plate Chamber: local gas amplification between 2 glass plates with high voltage

1*1 cm² readout pads

readout: 12 bit (analog)

readout: 1 bit (digital)

readout: 2 bit (semi-digital)

CALICE AHCAL

CALICE DHCAL

CALICE SDHCAL

Performance Measures

What can we measure? How can we measure it?

CALICE Strategy:

- Demonstrate performance with physics prototypes
- Demonstrate scalability with technological prototypes

Performance measurements in beam tests:

- In test beams you get only single particles, no jets → direct measurement of the jet energy resolution not possible
- Nevertheless, measurements in beam tests provide important information:
 - energy resolution for single particles → one important ingredient in the JER
 - comparison of shower shapes in data and simulation (Geant4) → important for realistic performance of Particle Flow Algorithms for jets in simulation
 - tests of the Particle Flow Algorithms with overlayed showers

Performance: Energy resolution

Energy resolution for electrons

CALICE ECALs

$$\frac{\sigma(E)}{E} = \frac{(12.5 \pm 0.4)\%}{\sqrt{E}} \oplus (1.2^{+0.6}_{-0.7})\%$$

reasonable energy resolution for electromagnetic showers

PFA ECALs are optimised for granularity, not single particle energy resolution

Energy resolution for charged pions

CALICE HCALs

JINST 7 (2012) P09017

software compensation improves stochastic term: $58\%/\sqrt{E} \rightarrow 45\%/\sqrt{E}$

NIM A939 (2019) 89

Digital HCAL

resolution doesn't improve beyond ~30 GeV

JINST 11 (2016) P04001

measurement with 1 or 3 thresholds

3 thresholds improve resolution at large energies

E_{beam} [GeV]

Energy resolution for charged pions

The power of high granularity

Software compensation (SC):

- non-compensating calorimeters show different signals for electromagnetic and hadronic showers
- hadronic showers include electromagnetic sub-showers
- in the reconstruction, use different weights for electromagnetic and hadronic sub-showers
- Significant improvement of energy resolution

JINST 7 (2012) P09017

$$\frac{\sigma(E)}{E} = \frac{(44.3 \pm 0.3)\%}{\sqrt{E}} \oplus (1.8 \pm 0.3)\% \oplus \frac{0.18 \text{ GeV}}{E}$$

Performance of combined scintillator calorimeter system

Energy reconstruction in a highly granular calorimeter system

in a real calorimeter system, hadrons are not measured purely in HCAL, but in ECAL + HCAL (+ tailcatcher)

ECAL and HCAL typically have different absorber, sampling ratio, active material

combined system of scintillator-tungsten ECAL + scintillator-steel AHCAL has **very similar performance** to AHCAL alone

Performance: Shower Imaging

Shower Profiles

Examples: Pion showers in tungsten calorimeters

High granularity allows determination of shower start → measure detailed hadron shower profiles

Description by simulations typically within ~10% → important for Particle Flow performance

JINST 13 (2018) P12022

Track Segments within hadron showers

Substructure of hadron showers

JINST 8 (2013) P09001

AHCAL

JINST 12 (2017) P05009

SDHCAL DATA (H2 CERN SPS) FTFP_BERT_HP QGSP_BERT_HP FTF_BIC CALICE SDHCAL CALICE SDHCAL b)

60 70 80 E_{beam} [GeV]

NIM A937 (2019) 41

Shower Separation

Particle Flow Algorithms at work

Overlay of showers in measured and simulated events

- Charged and neutral hadron showers
- Electromagnetic and charged hadron shower

Performance of Particle Flow Algorithms well described by simulation

Technological Prototypes

SDHCAL Technological Prototype

Recent developments

SDHCAL prototype has **integrated electronics** already

48 layers with ~440.000 channels

Aspects for **scalability** to collider detector

- Layer size will increase from 1*1 m² to up to 1*2 m²
 - → optimize gas flow and spacers
- Minimise size of interface electronics

Improved time resolution

- Multi-gap RPCs can reach ~100 ps
- Plan to build a timing layer and integrate it into SDHCAL prototype

AHCAL Technological Prototype

- front-end electronics, readout
- voltage supply, LED system for calibration
- no cooling within active layers → power pulsing

Scalable to full collider detector (~8 million channels)

Prototype with 38 layers and ~22.000 channels operated in **testbeam**

- Very stable running
- Nearly noise free
- < 1 per mille dead channels

AHCAL Technological Prototype

Fully integrated design

- front-end electronics, readout
- voltage supply, LED system for calibration
- no cooling within active layers → power pulsing

Scalable to full collider detector (~8 million channels)

Prototype with 38 layers and ~22.000 channels operated in **testbeam**

- Very stable running
- Nearly noise free
- < 1 per mille dead channels

Scintillator ECAL Technological Prototype

Recent developments

Fully integrated design

Testbeam prototype with 32 layers and ~7.000 channels built

- Tested with cosmic muons
- Ready for beam tests (delayed due to Covid)

Silicon ECAL Technological Prototype

Recent developments

Space constraints for ECAL especially challenging

- Minimum thickness of integrated electronics to minimize total thickness
- Minimum size of electronics interfaces to minimize gaps in the coverage

Scalable to full detector (~100 million channels)

Testbeam prototype under construction

Up to 30 layers and ~30.000 channels

Pixel size 5.5x5.5 mm²

BGA-packaged ASICs

unpackaged ASICs

Highly granular calorimetry beyond Higgs Factories

CMS HGCAL

High granularity for HL-LHC

CMS calorimeter endcap will be replaced for HL-LHC by **H**igh-**G**ranularity **cal**orimeter

Granularity helps to suppress pile-up

Synergy with high granularity calorimeter concepts developed for electron-positron colliders

Silicon in the CE-E and close to the beam pipe

Scintillator tiles with SiPMs wherever radiation levels allow

CMS HGCAL

Towards construction

Moving towards fully-engineered design in 2021

Preparation for mass production of active modules

Will be the first large highly granular calorimeter in a collider detector!

Digital Pixel Calorimeter

Ultimate granularity ECAL

ALICE FoCal-E (Forward EM-Calorimeter)

- W absorber + Si-sensors
- Low-granularity layers Si-pads (~1x1 cm²) energy measurement
- High-granularity layers CMOS MAPS (~30x30 μm²) two-shower separation

Digital Pixel Calorimeter prototype

- All layers consist of high-granularity MAPS sensors: ALPIDE
- 3x3 cm² cross section
- 24 layers
- Tested with electron beam

Deep Underground Neutrino Experiment

High granularity for neutrinos

DUNE Far Detector: Study neutrino oscillations

Large LAr TPCs

Near Detector (ND): measure beam before oscillation

DUNE PRISM: 3 detectors of which 2 can be moved off-axis

ND-LAr: Liquid Argon TPC

 ND-GAr: High Pressure GAr TPC, surrounded by ECAL and magnet

SAND: plastic scintillator target

ND-GAr

- Typical energies of a few 100 MeV
- Angular resolution to distinguish π^0 and γ
- Key designs
 - Very thin absorber: 2 mm Copper
 - High granularity layers (similar to AHCAL)
 - Large strip layers in the back

Electron-Ion Collider

High granularity for Deep Inelastic Scattering

EIC: High energy collider for electrons and protons or ions

- Study nuclear structure
- $\sqrt{s} = 20 \text{ to } 100 \text{ GeV}$
- Polarized beams
- 1 or 2 interaction regions

See talk by E. Aschenauer

Several detector concepts

- Generic EIC concept detector
- TOPSiDE: Time Optimized Silicon Detector for the EIC
 - All silicon tracker
 - Hermetic 5D calorimeter: high granularity & precise timing
 - Silicon tungsten ECAL with LGADs for timing
 - Scintillator tile or RPC HCAL

TOPSIDE

More High Granularity

What has not been mentioned so far

Higher granularity is being studied for many other technologies

- LAr ECAL for FCC-ee and FCC-hh
- Granular Dual Readout calorimeters

• ...

 $\eta = 0$ $\frac{2x_0}{\Delta \phi \times \Delta \eta} = 0.0245 \times 0.05$ $\frac{2x_0}{\Delta \eta} = 0.0245 \times 0.05$ $\frac{2x_0}{\Delta \eta} = 0.01$ $\frac{2x_0}{\Delta \eta} = 0.1$ $\frac{2x_0}{\Delta \eta} = 0.01$ $\frac{2x_0}{\Delta \eta} = 0.01$ $\frac{2x_0}{\Delta \eta} = 0.0245$ $\frac{2x_0}{\Delta \eta} = 0.0245$

FCC-ee

Summary

- Highly granular calorimeters are essential to reach the jet energy resolution needed for future
 Higgs factories
- Performance of several concepts has been demonstrated with prototypes in beam tests
- Scalability to collider detectors is being addressed
- Applications beyond Higgs factories
 - CMS HGCAL will be the first highly granular calorimeter in a collider detector

Thank you!