

State-of-the-art Micro-Pattern Gaseous Detectors (RD51)

24-29 May 2021 – TIPP 2021

Silvia Dalla Torre, INFN - Trieste

MAJOR CREDITS

ECFA Detector R&D Roadmap

(https://indico.cern.ch/event/957057/program)

Symposium of Task Force 1

"Gaseous Detectors", 29 April 2021

(https://indico.cern.ch/event/999799/)

- Organized by TF1 conveners:
 - Anna Colaleo (INFN, Bari)
 - Leszek Ropelewski (CERN)


I am in debt to Anna, Leszek, the whole TF1 team and all the speakers at the Symposium

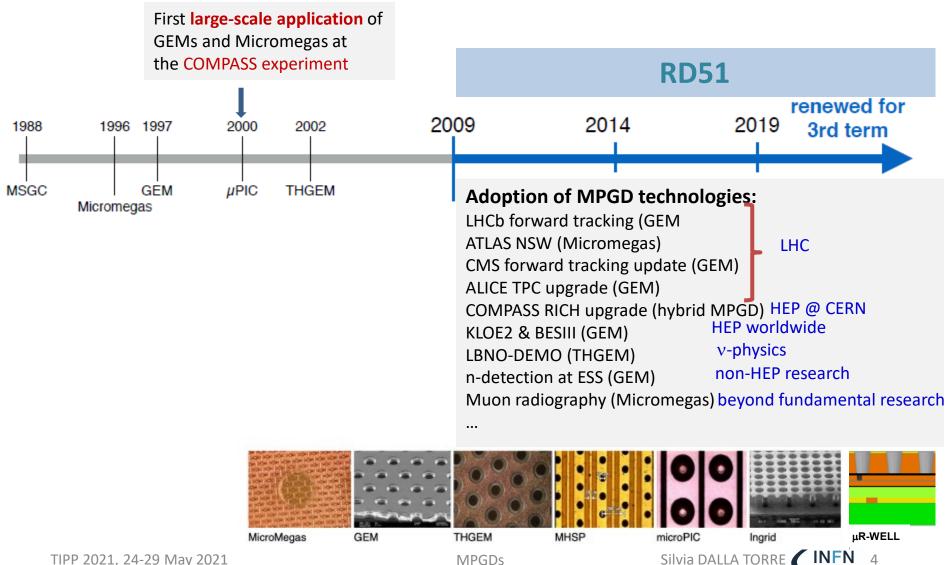
MPGD2019

I am in debt to all the speakers at the Conference

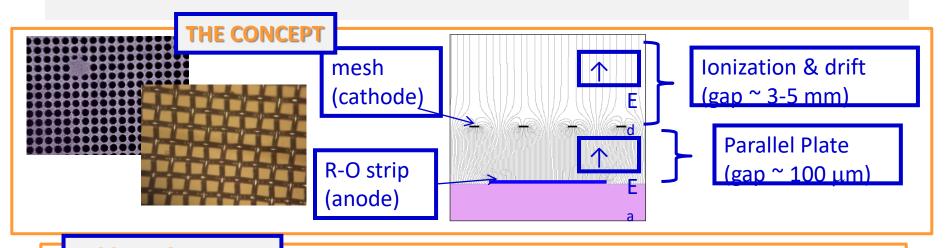
RD51

I am in debt to all the RD51 collaborators

OUTLOOK


- MPGDs, historical hints
- MPGD, technologies
- MPGDs, applications

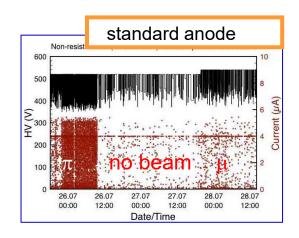
The field is so rich that it is impossible to be exhaustive!


→ Only examples

- MPGDs, present technological frontiers
- RD51, a collaboration for MPGD development and dissemination
 - Also a model for progressing in detector R&D

MPGDs history & RD51

MPGD TECHNOLOGIES: MICROMEGAS



DISCHARGE RATE, THE ENEMY AND THE WAY-OUT

Resistive Anodes

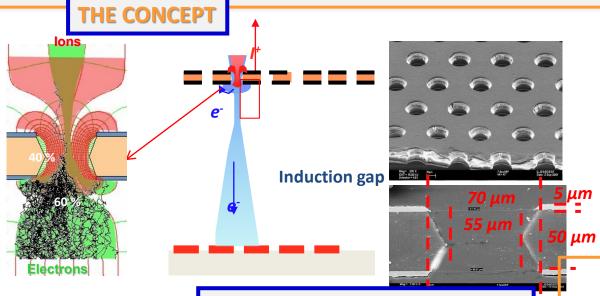
Developed within the ATLAS-NSW project

J. Wotschack CERN Det. seminar, 18/11/2011

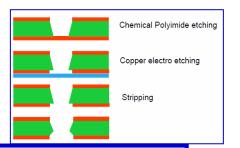
120 GeV/c

Resistive anode

(γ) tuesting

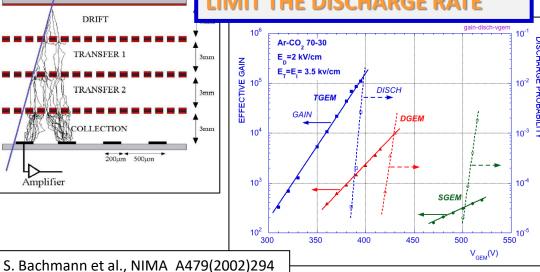

1.5 (

22:00:00 22:30:00 23:00:00 Time (hh:mm:ss)

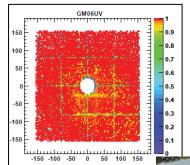

beam: π, μ

MPGD TECHNOLOGIES: GEM

LARG-SIZE FOILS

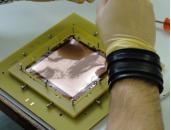


Single mask production to misalignments, adopted for TOTEM, KLOE2, CMS



MASS PRODUCTION

MULTILAYER ARCHITECTURE TO LIMIT THE DISCHARGE RATE


Spacers between foils (COMPASS, TOTEM)

Stretching and gluing (LHCb, KLOE2)

Mechanical stretching (CMS)

Silvia DALL

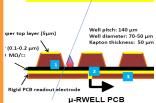
TIPP 2021, 24-29 May 2021

MPGDs

MPGD – TECHNOLOGIES, more

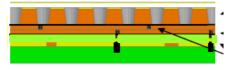
MSGC - MicroStrip Gas Chamber A. Oed, NIMA 263(1988) 351 The first MPGD concept!

THGEM or LEM


A different technology

- **PCB** industry
- **Robust**
- Self-supporting plates

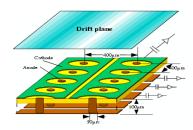
introduced in // by different groups:


- L. Periale et al., NIM A478 (2002) 377.
- P. Jeanneret, PhD thesis, Neuchatel U., 2001.
- P.S. Barbeau et al, IEEE NS50 (2003) 1285
- R. Chechik et al., NIMA 535 (2004) 303

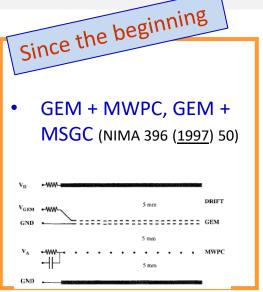
uR-WELL

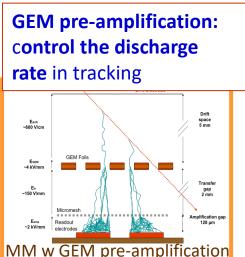
G. Bencivenni et al., 2015_JINST_10_P02008

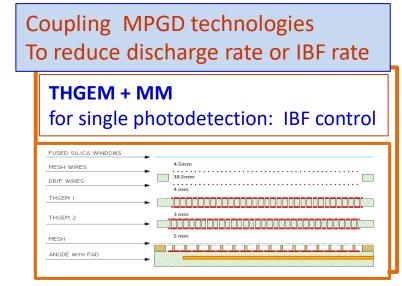
high rate μR-WELL

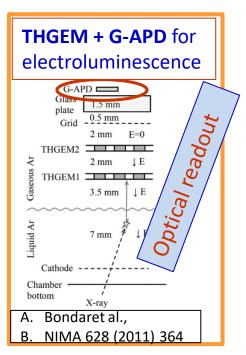


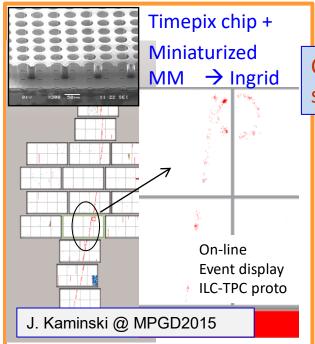
NIMA 858 (2020) 162050

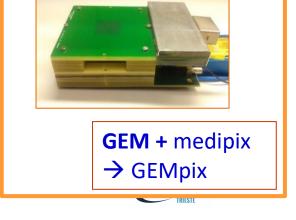

Novel architectures with emphasis on industrial production options


μPIC


NIMA 471 (2001) 264




MPGD - TECHNOLOGIES, more: HYBRID DETECTORS



Coupling with high granularity solid state sensors

MPGD PERFORMANCE

Never used in an experiment, so far

MICROMEGAS

Space resolution

• COMPASS, ~90μm (NIMA 577 (2007) 455)

Time resolution

• COMPASS, ~ 9 ns (NIMA 577 (2007) 455)

Gain

- COMPASS: G ~ 6400 (NIMA 469 (2001) 133)
- T2K TPC: G ~ 1500 (NIMA 637 (2011) 25)

Material budget

 COMPASS, 0.3 % X0 (NIMA 577 (2007) 455)

Rate capability

• ATLAS-NSW resistive, lin. up to 100kHz/cm² (2013 JINST 8 C12007)

• COMPASS pixelated with GEM pre-amplification, operated up to ~1·10⁵/s/mm²

(D. Neyret, MPGD2015)

GEM

Space resolution

• COMPASS, ~70μm (NIMA 577 (2007) 455)

Time resolution

- COMPASS, ~ 12 ns (NIMA 577 (2007) 455)
- LHCb 4.5 ns (dedicated effort)
 (NIMA 535 (2004) 319)

Gain

- COMPASS, G ~ 8000
 (B. Ketzer, pr. comm.)
- LHCb, G ~ 4000
 (NIMA 581 (2007) 283)
- Phenix HBD: G ~ 4000 (NIMA 646 (2011) 35)

Material budget

- COMPASS, 0.4 % X0 (NIMA 577 (2007) 455)
- COMPASS pix.ed, 0.2 % X0 (NP B PS 197 (2009) 113)

Rate capability

COMPASS pixelated,
 stable up to 1.2·10⁵/s/mm²
 (NP B PS 197 (2009) 113)

μ–RWELL⁴

(NIMA 858 (2020) 162050)

Space resolution

• ~60-80 μm

Time resolution

5-6 ns (JINST 12 (2017) C06027)

Gain

■ > 10⁴

Material budget

1%X0 (G. Bencivenni private comm.) (different for the various schemes)

Rate capability

≥10 MHz/cm² (high-rate version)

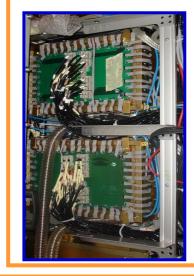
MPGD gain record in experiment

(NIMA 936 (2019) 416)

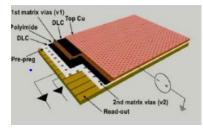
Hybrid (2 THGEMs + MM) photon detectors of <u>COMPASS RICH</u>:

GAIN: ~15000

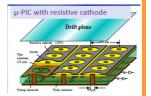
ATLAS New Sm (MICROI 1200 m²

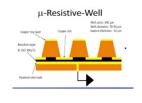

ATLAS New Small Wheels (MICROMEGAS) 1200 m²

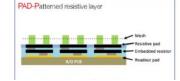
DISSEMINATION

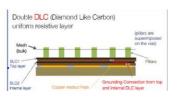

@ CERN, major LHC exp.s

Muon upgrade
By high-rate μ_RWELL
90 m²

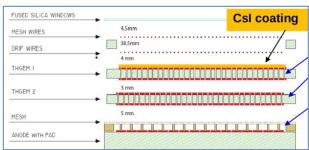


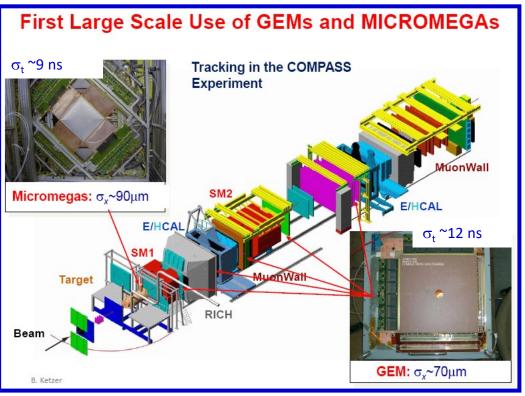


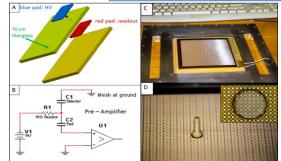

CMS Muon system (GEMs) 220 m²


ATLAS - HL-LHC

Options for the very forward muon tagger: μ -PIC, μ RWELL, pixelized resistive MM

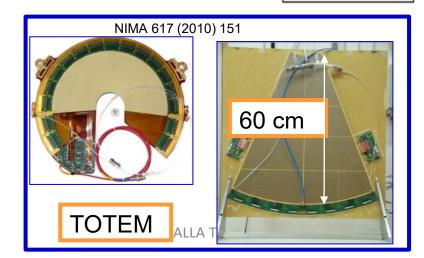


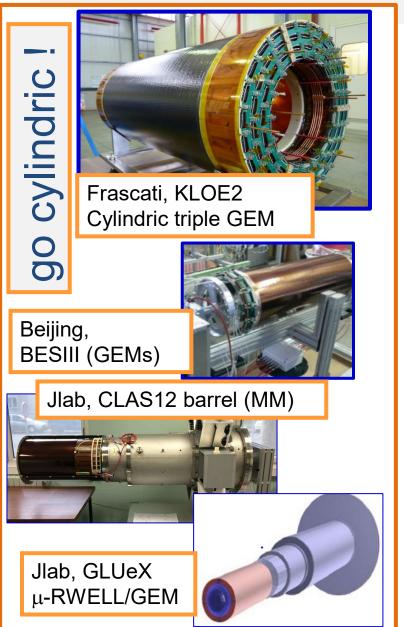




DISSEMINATION, @ CERN, beyond main LHC exp.s

slide by W. Riegler, CERN Academic Training, <u>April 2008</u> COMPASS RICH photon detector upgrade

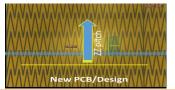


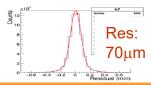


_ • ...

NIMA 936 (2019) 416

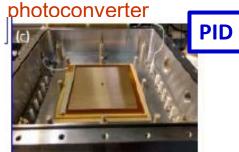
DISSEMINATION, around the world

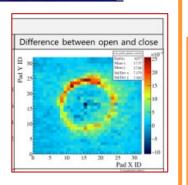

DISSEMINATION, MPGDs options for the EIC

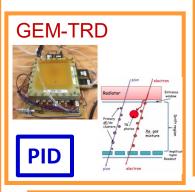

Quintuple GEM photon detector for a windowless gaseous RICH

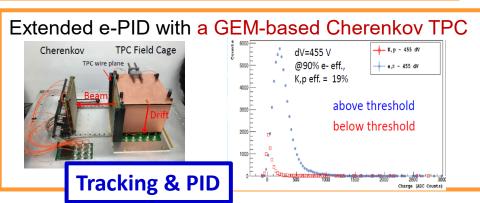
GEM stack CF4 Radiator Mirror In focus

Particle track

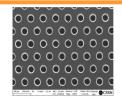

Zigzag GEM read-out for low channel count preserving fine space resolution in TPC r-o






Tracking

RICH r-o with hybrid MPGDs with miniaturized pads and novel nanodiamond



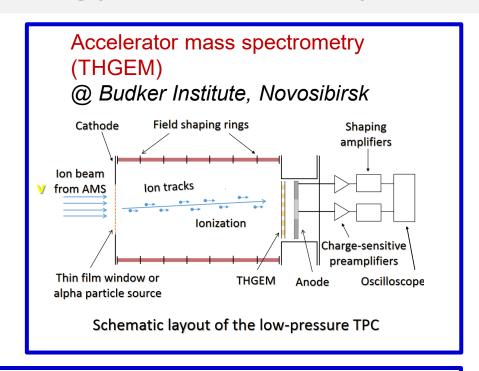
Low material-budget with ultra-low mass Cr GEM foils

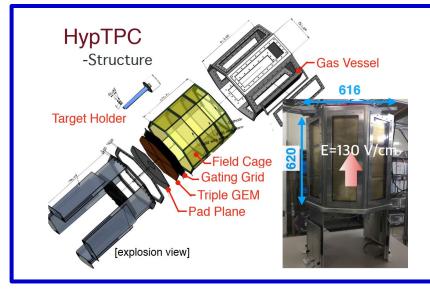

Tracking

Set of coaxial cylindrical MM / μ -RWELL

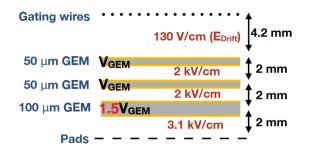
For tracking in the barrel region

Tracking


DISSEMINATION, FUTURE COLLIDERS	IN A COMPILATION by M. Titov	- (
	TIPP 20	2


	Experiment / Timescale	Application Domain	Gas Detector Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
TRACKING	ILC TPC DETECTOR: STARTt: > 2035	e+e- Collider Tracking + dE/dx	MM, GEM (pads InGrid (pixels)	Total area: ~ 20 m ² Single unit detect: ~ 400 cm ² (pads) ~ 130 cm ² (pixels)	Max. rate: < 1 kHz Spatial res.: <150μm Time res.: ~ 15 ns dE/dx: 5 %	Si + TPC Momentum resolution : dp/p < 9*10 ⁻⁵ 1/GeV Power-pulsing
	CEPC TPC DETECTOR START: > 2030	e+e- Collider Tracking + dE/dx	MM, GEM (pads InGrid (pixels)	Total area: ~ 2x10 m ² Single unit detect: up to 0.04 m ²	Max.rate:>100 kHz/cm ² Spatial res.: ~100 μm Time res.: ~ 100 ns dE/dx: <5%	- Higgs run- Z pole run- Continues readout- Low IBF and dE/dx
TR	SUPER-CHARM TAU FACTORY START: > 2025	e+e- Collider Inner Tracker	Inner Tracker / cylindrical µRWELL, or SPC / MPDG repar.	Total area: ~ 2 - 4 m ² Single unit detect: 0.5 m ²	Max. rate: 50-100 kHz/cm ² Spatial res.: ~<100 μm Time res.: ~ 5 -10 ns Rad. Hard.: ~ 0.1-1 C/cm ²	Challenging mechanics & mat. budget < 1% X0
/er	ELECTRON-ION COLLIDER (EIC) START: > 2025	Electron-lon Collider Tracking	Barrel: cylindrical MM, μRWELL Endcap: GEM, MM, μRWELL	Total area: ∼ 25 m²	Luminosity (e-p): 10 ³³ Spatial res.: ~ 50- 100 um Max. rate: ~ kHz/cm ²	Barrel technical challenges: low mass, large area Endcap: moderate technical challenges
eCal pre-shower	FCC-ee and/or CEPC IDEA PRESHOWER DETECTOR START: >2030	Lepton Collider Tracking	μ-RWELL	Total are: 225 m ² Single unit detect: (0.5x0.5 m ²) ~0.25	Max. rate: 10 kHz/cm ² Spatial res.: ~60-80 μm Time res.: 5-7 ns Rad. Hard.: <100 mC/cm	
SYSTEM	FCC-ee and/or CEPC IDEA MUON SYSTEM START: >2030	Lepton Collider Tracking/Triggerin	μ-RWELL RPC	Total area : 3000 m ² Single unit detect: ~0.25 m ²	Max. rate: <1 kHz/cm ² Spatial res.: ~150 μm Time res.: 5-7 ns Rad. Hard.: <10 mC/cm ²	
	FCC-hh COLLIDER MUON SYSTEM START: > 2050	Hadron Collider Tracking/Triggerin	All HL-LHC technologies (MDT_RPC, MPGD_SC)		Max. rate: < 500 kHz/cm ² Spatial res.: <100 μm Time res.: ~ 3 ns Rad. Hard.: ~ C/cm ²	Redundant tracking and triggering;
MUON	MUON COLLIDER MUON SYSTEM START: > 2050	Muon Collider	RPC or new generation Timing MPGD	Single unit detect:	Spatial res.: ~100µm Time res.: <10 ns Rad. Hard.: < C/cm ²	Redundant tracking and triggering

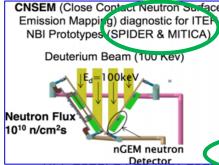
DISSEMINATION, low energy nuclear physics



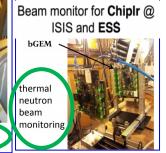
E42 experiment @ J-PARC, Tokai for H-dibaryon search with HypTPC Sensors: GEMs with non-standard geometry

DISSEMINATION, neutron detection

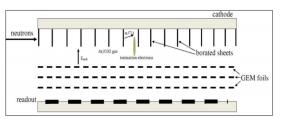
ain credits: G. Croci, MPGD2019

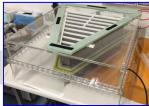


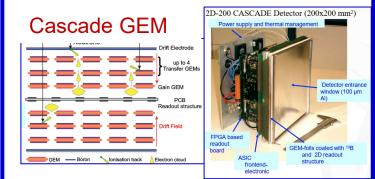
GEM & GEM-derived detectors playing a major role for n detection (³He shortage)


- Fast Neutrons: Polyethylene converter + Aluminium
 - Neutrons are converted in protons through elastic scattering on hydrogen
- Thermal Neutrons: ¹⁰Boron converter
 - Neutrons are detected using the productus (alpha,Li) from nuclear reaction ¹⁰B(n,alpha)7Li

Triple GEM Detector Low efficiency detector (few % maximum)

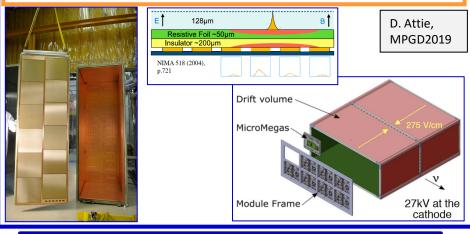





New architectures to increase the efficiency for ESS

Band-GEM

Efficiency: 40-50 %

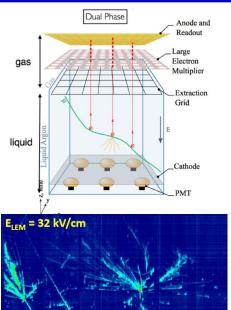


SIIVIA DALLA TURK

TRIESTE

DISSEMINATION, v-physics, rare events, astrophysics

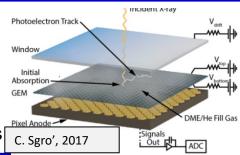

T2K: TPC read-out by MM, resistive MM in the upgrade to increase space resolution



PPIC GEM Drift Cage Kan New July 1 T. IKEDA, MPGD2015

Cygno for
Directional Light
Dark Matter search
by detecting
electroluminescence
in GEMs

DUNE double-phase read-out by LEM (= THGEM)


D. Autiero, 2020

IAXO International Axion Observatory sources, using Ingrid technology

2014 JINST 9 T05002

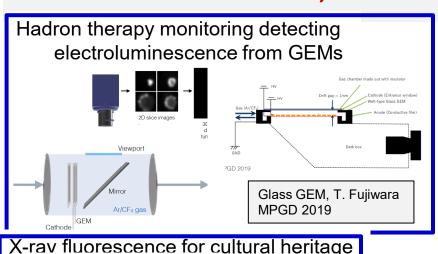
NASA IXPE: X-ray
polarimetry to study
acceleration processes
in astrophysical
sources,
using 50µm pitch GEMs

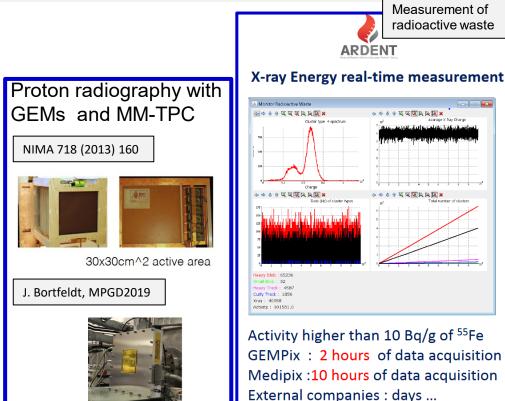
DISSEMINATION, BEYOND FUNDAMENTAL SCIENCE

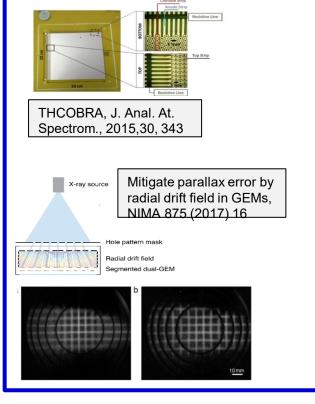
An introduction

Main credit: F. Murtas, TF1 symposium, 29 April 2021

Gas detectors for sure are not portable devices like Timepix. Timepix Family is one of the best example of detector with wide applications beyond fundamental research


But when you need:


- big detection areas,
- high radiation tolerances
- measure high intensity particle fluxes,
- medical imaging (big areas)
- detect thermal neutrons with high efficiency
- study on micro dosimetry
- low energy Xrays


then you need gas detectors, in spite of the need of HV and gas supply systems

examples: medical, cultural-heritage, muography, radioactive wastes (plasma fusing and nuclear plants already mention with other n-detectors)

DISSEMINATION, BEYOND FUNDAMENTAL SCIENCE

Muography

Applications: vulcanology, archeology, civil engineering, nuclear reactor monitoring

Discovery of a big void in Khufu's Pyramid by observation of cosmic-ray muons

Nature 552

(2017) 386

TECHNOLOGICAL FRONTIERS,

GO RESISTIVE!

Main credit: M. Iodice, TF1 symposium, 29 April 2021

MOTIVATIONS:

- operation at high gain for single e and precise timing
- long-term detector stability: tens of C/cm²
- operation at high rate: 10 MHz/cm² (and beyond)

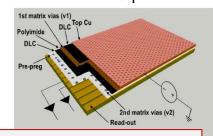
THE ENEMY: DISCHARGES

- Mechanical imperfections
- Micrometric structures in **MPGD**
- Transition from avalanche to streamer mode for too many ionization electrons

A WAY-OUT

Diverging processes can be quenched by means of resistive electrodes

MM: born non-resistive, Consolidated with resistivity

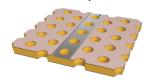

FRONTIER IN RATE CAPABILIT

· MIX "DLC" and screen printed

Pixelated resistive bulk Micromegas with integrated electronics

M. lodice, TF1 symposium, 29 April 2021

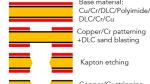
Double DLC µRwell



A new technology, born resistive

MPGDs

DLC in SECTORS **SEPARATION:**


preserve the electric field line uniformity

Sauli "RESTORING EFFICIENCY IN GEM SECTOR SEPARATIONS'

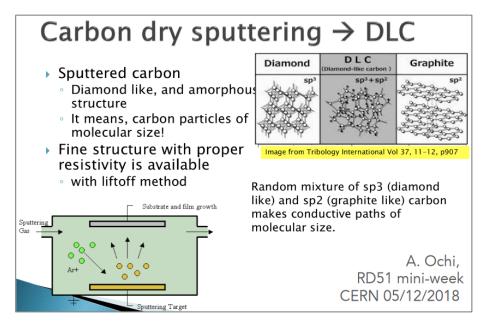
ONGOING R&D

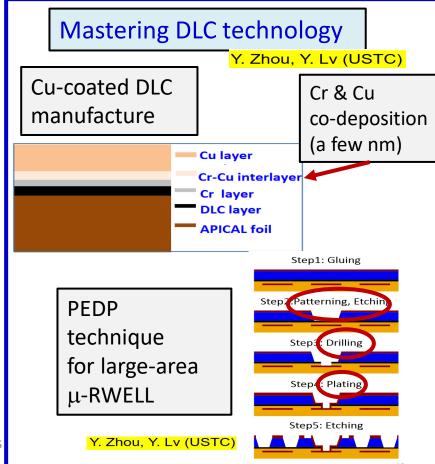
Full DLC GEM

adhesion of Cr on DLC

R. De Oliveira, RD51 October2019 https://indico.cern.ch/event/843711/1

Improving of GEM stability with resistivity, under study


TECHNOLOGICAL FRONTIERS, GO RESISTIVE!


Current developments on Resistive MPGD - DLC

 Diamond Like Carbon (DLC) coatings: properties of DLC have offered new possibilities opening the way to develop new

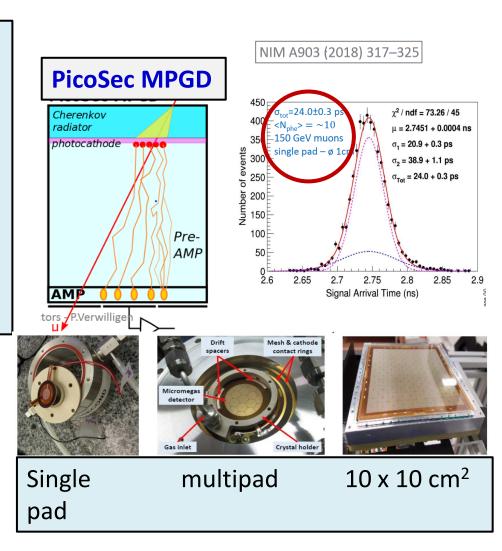
detector structures.

Stable and mechanically robust material

For DLC see also:

and references therein

RD51 DLC Workshop Report RD51-NOTE-2021-002


TECHNOLOGICAL FRONTIERS, FINE TIME RESOLUTION

MOTIVATIONS:

- Mitigation of pile-up in present and future colliders
- Extended <u>TOF</u> systems
- ... and medical applications (PET)

THE major OBSTACLE:

- fluctuations in primary ionization

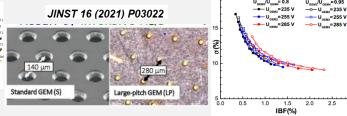
TECHNOLOGICAL FRONTIERS, CONTROL ION BACK-FLOW (IBF)

Main credit: F. Tessarotto, TF1 symposium, 29 April 2021

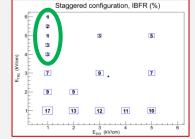
MOTIVATIONS

- in <u>Photon Detectors</u> (PD)
 - photocathode ion bombardment
- in <u>TPC</u>
 - space charge → field distortion

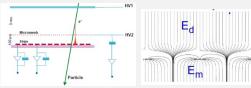
MPGD technologies and optimized IBF reduction

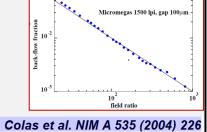

- Triple GEMs with <u>staggered</u>

 holes, IBF < 1%

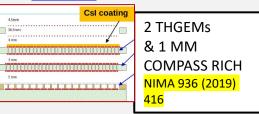

 A. Bondar *et al.*, NIM A 496 (2003) 325

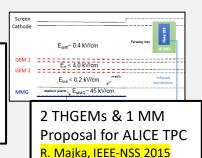
 A. Bondar *et al.*, NIM A 496 (2003) 325

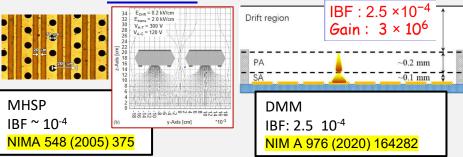

 Gain
- Quadruple GEMs with non-standard geometry (ALICE TPC)______



Triple THGEMs with staggered holes, IBF~1 %

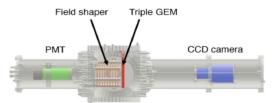



• MICROMEGAS, intrinsic ion blocking properties



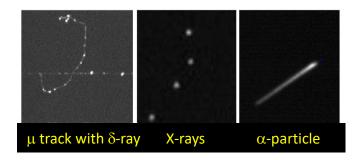
Hybrid architectures

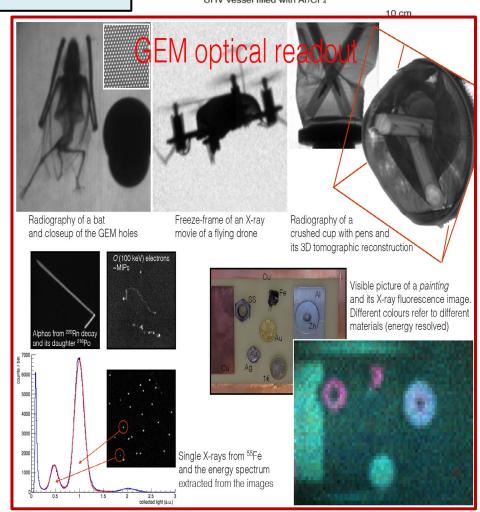
WORLD RECORDS


2013 JINST **8** P01021

TECHNOLOGICAL FRONTIERS, OPTICAL R-O

MOTIVATIONS:

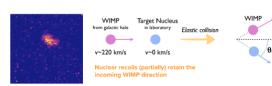

- Pixellated readout approaches (optical, hybrid, ASICs) offer <u>unprecedented levels of detail</u> in recorded events


Main credit: F. Brunbauer, TF1 symposium, 29 April 2021

UHV vessel filled with Ar/CF4

High-rate of images with bubble chamber resolution

TECHNOLOGICAL FRONTIERS, OPTICAL R-O


Optical TPCs

Atmospheric pressure Optical TPC

Rare event searches directional dark matter

Triple GEM with CMOS + PMT/SiPM readout requiring low radioactivity background

D. Pinci et al., CYGNO: Triple-GEM Optical Readout for Directional Dark Matter Search, MPGD 2019 https://indico.cern.ch/event/757322/contributions/3396494/attachments/1841021/3018431/Cyano_MPGD19.pdf

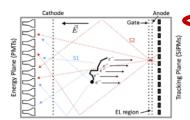
Low-pressure TPC with optical+electronic readout

Migdal effect search in low-pressure CF₄ for DM searches

CMOS + electronic readout of transparent strip anode

P. Majewski, RD51 Mini-Week 2020, https://indico.cern.ch/event/872501/contributions/3730586/attachments/ 1985262/3307758/RD51 mini week Pawel Majewski ver2.pdf

High Pressure TPC

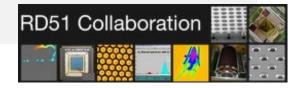

Towards an eutrino-nucleus cross section experiments

Stitched optical readout (4 CCD cameras) + electronic signals from meshes used for amplification

1 m³ high pressure TPC (up to 5 bar)

A. Deisting, HPTPC, https://arxiv.org/pdf/2102.06643.pdf

High Pressure Xe gas TPC with electroluminescent amplification


Neutrinoless double beta decay searches in 136Xe

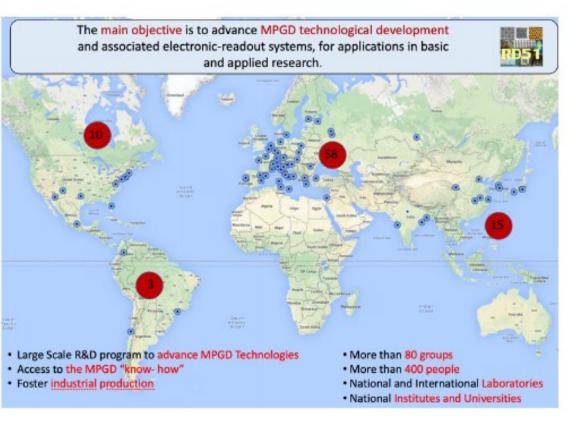
PMTs for energy measurement & t₀ from S1, SiPM-based tracking plane recording electroluminescence

https://next.ific.uv.es/next/experiment/detector.html L. Arazi, Status of the NEXT project, https://doi.org/10.1016/j.nima.2019.04.080

10

RD51

RD51, aims at facilitating the development of advanced gas-avalanche detector technologies and associated electronic-readout systems, for applications in basic and applied research. The main objective of the R&D programme is to advance technological development and application of Micropattern Gas Detectors.


[RD51 web-page, first lines]

HOW?

Networking by <u>collaborations</u>, <u>technology</u> <u>dissemination</u> and <u>training</u>


Main credit for this section: L. Ropelewsky, TF1 symposium, 29 April 2021

RD51, THE COLLABORATION

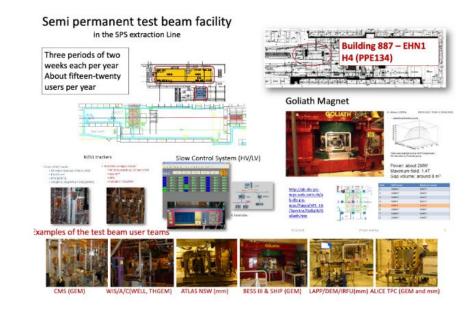
RD51, THE STRUCTURE

- R&D support for the experiments and LHC upgrades WG1
- Generic R&D (new structures, ideas, detector physics) RD51 Common Projects WG2 Development of new structures and consolidation of the existing structures
- Applications and dissemination; Academia-Industry matching events, training, education WG3
- Development and Maintenance of Software & Simulation Tools; basic studies & software support for the RD51 community WG4
- Development and Maintenance of the SRS Electronics; An extended support for the SRS including new developments and implementations of additional features WG5
- MPGD Production and QA Control; Industrialization GEM, Micromegas, Thick GEM; WG6
- Maintenance of the RD51 Lab and Test-Beam Infrastructure WG7

RD51, CERN based infrastructure

GDD web site

EP-DT-DD GDD Laboratory available for the RD51 collaboration


Permanent installations : CMS, ALICE, ATLAS, ESS More than 15/20 groups per year coming to perform measurements

Clean Rooms

Mechanical and Electronic Workshop

Technical support MPGD Detectors
Gas system and services
Readout electronics (std and custom RD51 SRS Radioactive Sources
Interface with CERN services (RP, gas, metrology, irradiation facilities,...)

RD51, CERN based infrastructure

MPT workshop @ CERN

MPGD Projects

 •SBS tracker
 GEM 600mm x 500mm

 •ALICE TPC upgrade
 GEM 600mm x 400mm

 •CMS muon
 GEM 1.2m x 450mm

 •ATLAS NSW muon
 Micromegas 2m x 1m

*COMPASS pixel Micromegas GEM & Micromegas 500mm x 500mm

. Most of them are still at the R&D phase but some are already in production:

• ATLAS NSW 1300 m2
• SBS Tracker 100 GEMs
• ALICE TPC upgrade 350 GEMs
• COMPASS pixel Micromegas 20 GEM +

*BESIII 1
*CLAS 12 3

30 Micromegas 450 GEM

New Capabilities

UV exposure unit limited to 2m x 0.6m → 2.2m x 1.4m

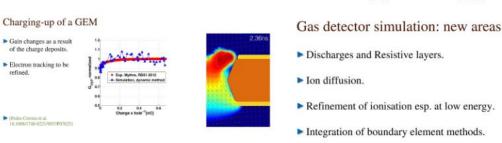
Resist developer limited to 0.6m width → 1.2m Resist stripper "

Copper etcher Dryer


GEM electro etch limited to 1m → 2m

installation of the new infrastructure (to produce 2x1m² Bulk MM & 2x0.5m² GEM)

Construction of the new workshop's building



CMS

RD51, TOOLS

Modelling of Physics Processes and Software Tools

Support for the detector simulation sofware

Electronics for gaseous detectors

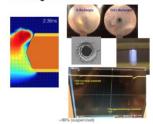
RD51, TRAINING & TECHNOLOGICAL DISSEMINATION

Danube School on Instrumentation in Elementary Particle & Nuclear Physics (Novi Sad Serbia)

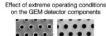
om their beginning, MPGDs have played a fundamental role in HE

RD51, THE VISION: two-folded actions

Direct support to experiments

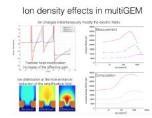

Facilities Lab and Beam (one example... ATLAS NSW micromegas)

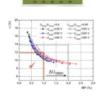
ATLAS NSW - RD51 mm trackers


(GDD lab) RD51/GDD Lab

Discharge studies ALICE/CMS

SUPPORT TO GENERIC R&D AND BLE-SKY,


the dark-side of the moon: needed and, nevertheless, marginally supported or ignored



Current and previous RD51 Common Projects

Discharge Consortium in quest for Spark-Less-Avalanche-Microstructures

Pixelated resistive bulk Micromegas with integrated electronics

Resistive materials and resistive-MPGD concepts & technologies

Modular & General purpose Ultra Low Mass GEM Based Beam Monitors

DLC based electrodes for future resistive MPGDs

Study of negative ion mobility and ion diffusion for Negative Ion TPCs

Development of modular multilayer GEM units

Sampling Calorimetry with Resistive Anode MPGDs (SCREAM)

New Scintillating gases and structures for next-generation scintillation-based gaseous detector

CONCLUSIONS

I have presented FACTS about MPGDs (by examples)

 Even if the gallery could not be exhaustive, the DISSEMINATION and FERTILITY of the field is self-evident

 The RD51 approach to network in detector R&D has make possible the MPGD blossom and it is a possible model also for other detector R&D domains

THANK YOU