Skipper-CCDs and the SENSEI Search for Sub-GeV Dark Matter

Sho Uemura

Tel Aviv University for the SENSEI Collaboration

SU was supported in part by the Zuckerman STEM Leadership Program

◆□ > ◆□ > ◆豆 > ◆豆 > 三日 のへで

The search for sub-GeV dark matter

- Direct-detection experiments have focused on WIMP DM down to O(GeV)
 - Well motivated ("WIMP miracle"), experimentally accessible (nuclear recoils)
- New complementary searches for lower masses
 - New theoretical interest in dark sectors
 - New technologies with lower thresholds
- One promising direction: Skipper-CCDs for electron recoil, with thresholds near the silicon bandgap
 - Many others, both for NR and ER refer back to M-C. Piro Monday talk
- The DM results I show are for the 2020 test run of SENSEI (arXiV:2004.11378), but the program is just getting started

A D N A P N A P N A P N

Electron recoils in silicon

- We look for DM interactions with electrons in silicon
 - ► DM-electron scattering: m_{\chi} in the MeV-GeV range
 - ★ Energy transfer is a few eV, good match to semiconductor band gap
 - DM absorption: bosonic DM at the eV scale
 - ★ Energy transfer equals m_{χ}
- Energy transfer creates ionization, and we measure the number of electron-hole pairs

□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sho Uemura

Strategy

- Challenges:
 - Unambiguously ID 1e⁻, 2e⁻ events
 - Minimize background sources of charge
 - Minimize coincidence background
- Our starting point is the CCD
 - Mature technology, used for DM in DAMIC
 - Achieves #3 through pixel segmentation
- Same physics as EDELWEISS, CDMS HV very different detector

-

< B. Image: A 1 = 1

CCD searches for dark matter

- DAMIC (40 g, complete): first CCD DM experiment
- SENSEI (*O*(100) g starting 2021): first DM experiment with Skippers
 - Several physics results (most recent 2020) from prototypes and test runs; full-scale experiment under construction
 - Active mass and radiopurity similar to DAMIC
- DAMIC-M (*O*(1) kg starting 2023): next-generation Skipper experiment
 - Scaling up in mass, with corresponding improvement in radiopurity
- Oscura (O(10) kg, in development): large-scale
 - Major R&D for readout, cooling, integration

The SENSEI Collaboration

Fermilab:

- F. Chierchie, M. Cababie, G. Cancelo, M. Crisler, A. Drlica-Wagner, J. Estrada,
 - G. Fernandez-Moroni, D. Rodrigues, M. Sofo-Haro, L. Stefanazzi, J. Tiffenberg

Stony Brook:

• L. Chaplinsky, Dawa, R. Essig, D. Gift, S. Munagavalasa, A. Singal

Tel-Aviv:

• L. Barak, I. Bloch, E. Etzion, A. Orly, S. Uemura, T. Volansky

U. Oregon:

• T.-T. Yu

HEISING-SIMONS FOUNDATION

Sho Uemura

SENSE

Fully funded by Heising-Simons Foundation & leveraging R&D support from Fermilab

ELE DOO

• E •

CCDs

- Holes drift through the substrate and collect in pixels near the surface
- Charge packets are shifted to a shared amplifier (1 per quadrant) for readout
- All CCDs for DM are designed by LBNL MSL, based on fully-depleted CCD designs proven in astronomy
 - High-efficiency charge collection and transport, low dark current
 - Thickness limited only by commercial foundry capabilities
- Conventional CCDs are limited to noise of $\sim 2e^{-}$

• • • • • • • •

Skipper readout

- In a conventional CCD, charge moved to the sense node must be drained
 - > You can integrate longer, but you cannot beat the 1/f noise
- The Skipper amplifier lets you make multiple measurements!

Skipper readout

- In a conventional CCD, charge moved to the sense node must be drained
 - ▶ You can integrate longer, but you cannot beat the 1/f noise
- The Skipper amplifier lets you make multiple measurements!

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖圖 のQ@

Sub-electron readout noise

- Skipper noise scales as $1/\sqrt{N}$: trade resolution for speed
 - For the 2020 DM search we operated at N = 300 (13 ms/pixel), noise of ~ 0.14e⁻
- We can count single electrons: self-calibrating charge measurement with zero noise

The SENSEI CCDs

- High-resistivity silicon 675 μm thick, 1.59 \times 9.42 cm^2
- 6144 \times 886 pixels, 15 μm pitch (1.925 grams active)
- The first dedicated production of Skipper CCDs for dark matter

Sho Uemura

MINOS setup

- Shallow underground site (MINOS cavern at Fermilab), simple lead shield
- CCD at 135 K, biased at 70 V

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < < ○

Images!

- This is 1/6th of one quadrant
- 20 hours exposure, 5.15 hours readout
 - During readout, the image continues to accumulate hits and charge
- 22 images in the blinded dataset

Search	Exposure post-cuts
1 <i>e</i> -	1.38 gram-days
2 <i>e</i> -	9.17 gram-days
3 <i>e</i> -	11.87 gram-days
4 <i>e</i> -	11.70 gram-days

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Searches and backgrounds

- Single-electron: background-dominated
- Multiple electrons (single-pixel or cluster): low-background
 - Coincidence of 1e⁻ processes
 - ► True multi-*e*⁻ processes

- 1*e*⁻ processes
 - Local sources of charge: high-energy clusters (ionizing radiation), amplifier luminescence, CCD defects
 - Spatially uniform sources of charge
 - Spurious charge: charge generated during readout
 - Intrinsic dark current: charge generated during exposure by thermal excitation
 - Skippers give us new insight into these processes: paper in prep

- Multi-e⁻ processes: rare but irreducible
 - Compton scattering
 - Partial charge collection

Localized charge from high-energy events

- Bleeding: charge "left behind" by charge transfer
- Halo: excess of charge near high-charge pixels
 - Probably near-bandgap photons from Cherenkov radiation and electron-hole recombination (see arXiV:2011.13939)
- Loose clusters: regions with high charge density
 - May be Cherenkov photons (reflected, or generated outside of CCD)
- After cuts, charge density of 3.188(90) imes 10⁻⁴ e^{-} /pixel

Sho Uemura

Spurious charge

- Measurements with shorter exposures show a limiting value for the CCD charge: $1.66(12) \times 10^{-4} e^{-1}$ /pixel
 - ► Half of the 1*e*⁻ events we see are due to spurious charge!
 - Optimization of the CCD voltage waveforms will reduce this background in future runs
- Subtracting the exposure-independent charge, our 1e- rate is $1.59(16) \times 10^{-4}$ e^{-} /pixel/day

Intrinsic dark current

- Subtracting the exposure-independent charge, our 1e- rate is $1.59(16) \times 10^{-4}$ e^{-} /pixel/day
- Intrinsic dark current is the usual suspect
 - Thermal generation of electron-hole pairs, mediated by lattice defects
- However:
 - Extrapolation from higher temperatures (dashed black line) predicts <
 1 × 10⁻⁵ e⁻/pixel/day at our operating temperature of 135 K
 - Suppressing surface dark current gets us from red data points to blue
- High-quality silicon has made this a subdominant background

1e⁻ rate vs. shielding

- We have data with and without the outer ring of lead bricks
- Factor of 3 reduction in the rate of high-energy tracks \rightarrow similar reduction in the 1 e^- rate
 - Radiation generates charge in halos, in loose clusters, and uniformly
 - Better shielding will very likely further reduce our 1e⁻ rate

Sho Uemura

Multi-e⁻ backgrounds

- At the low-energy end of the Compton spectrum, a gamma ray can create arbitrarily small-energy electron recoils
 - DAMIC and SENSEI efforts to measure this spectrum and compare to theory
- Depending on details of processing, some CCDs have a highly-doped backside layer with partial charge collection: this can create low-charge events
 - DAMIC and SENSEI are affected, but future CCDs will not have this layer

Multi-e⁻ searches

- We observe 5 2*e*⁻ pixels and no 3, 4*e*⁻ clusters (adjacent nonempty pixels)
- Some multi-*e*⁻ events will be lost when they diffuse
 - We calibrate the diffusion width using muon tracks and simulate the geometric efficiencies: 22.8% for 2e⁻ to stay in one pixel, 76.1%, 77.8% for 3, 4e⁻ to form a contiguous cluster
- Now we can put limits on the rate of events

	90% CL
1 <i>e</i> -	525.2 events/g-day
2 <i>e</i> -	4.449 events/g-day
3 <i>e</i> -	0.255 events/g-day
4 <i>e</i> -	0.253 events/g-day

Limits from SENSEI@MINOS

- New record lows for semiconductor detectors and DM searches at these thresholds
- The derived DM constraints are also world-leading
 - Left to right: $F_{DM} = 1$ scattering (heavy mediator), $F_{DM} = (\alpha m_e/q)^2$ scattering (light mediator), absorption

SENSEI@SNOLAB

- We are building the full-scale SENSEI experiment, deep underground at SNOLAB with a low-background shield
- Installation in progress by SNOLAB team

Backup: CCD amplifiers

- Floating diffusion: standard CCD amplifier
- Floating gate: used in our Skippers
 - Enables nondestructive readout at the cost of S/N
- SiSeRO: under development by MIT-LL
 - Best of both worlds: nondestructive, and excellent S/N
 - Possible option for Oscura

