P-ONE

— The Pacific Ocean Neutrino Explorer —

Matthias Danninger for the P-ONE Collaboration TIPP 2021

Neutrinos from the Universe

Grand Unified Neutrino Spectrum (GUNS) at Earth integrated over directions and flavors

- -naturally occurring neutrinos can have extreme energies
- -manmade beams can reach E ~ 50 GeV at most
- -but the fluxes are low, so you need really large detectors

Neutrinos from the Universe

- Since 2013 Astrophysical neutrinos discovered
- 2018 Evidence for First source:
 Neutrino events in a direction of a flaring blazar, TXS 0506+056
- 2019 Very likely the first Glashow resonance observed
- Neutrino oscillation measurements at PeV scale!
-and so much more yet to be discovered

P-ONE

https://arxiv.org/pdf/2011.03561.pdf

SIMON FRASER UNIVERSITY

More neutrinos, better neutrinos!

- P-ONE project has large emphasis on collaboration and complementarity with existing efforts such as IceCube, GvD (Baikal), and KM3NeT —> we welcome collaboration/participation
- We aim for combined cross-calibration efforts to boost precision of all measurements at all neutrino telescope sites worldwide (POCAM, LiDAR, etc..)

- \bullet Horizontal coverage from which HE ν will not be affected by the Earth absorption
- With IceCube +3 neutrino telescopes (similar size), current sensitivity to astrophysical neutrinos would be improved by up two orders of magnitude (gain depends on energy)!

- The neutrino is the PeV messenger of the Universe
- We must now figure out what it is telling us!

— and opportunity for the neutrino community —

- One of world's largest and most advanced cabled ocean observatory
- Consists of NEPTUNE & VENUS & number of smaller observatories
- Yearly budget ~\$27M (CDN)

• NEPTUNE:

- completed in 2009
- 800km loop of fibre optic cable, data flow and power infrastructure
- designed for long-lived, highly reliable underwater operations
- high-speed data link (10GB/s)
- high power (at least 9 kW/node)
- "plug and play" basis allowing a highly modular deployment and maintenance

CASCADIA BASIN

NEPTUNE Observatory Ocean Networks Canada

Pacific Ocean Neutrino Explorer (P-ONE)

P-ONE

W Bottom Pressure Recorder (-2639 m)

West (-2660 m)

Cascadia Basin node

- 2600m deep abyssal plain
- 2°C year-round
- Low currents (0.1m/s)

Baby Bare

Seamount

AN INITIATIVE OF

Description: This map illustrates the planned location of the Pacific Ocean Neutrino Explorer (P-ONE) at Cascadia Basin. P-ONE is a new initiative which aims to redevelop ocean-based neutrino telescopes by harnessing Ocean Networks Canada

Data Sources: University of Alberta, University of Bremen, USGS Cascadia, McDonald Institute, Queen's University Last Updated: 2 January 2020

ONC — Expert support & deployment

Interface, anchoring and deployment operation by ONC,

— P-ONE pathfinder missions —

- What have we achieved so far?
 - What has been deployed
 - How well are the site characteristics known

Optical characterisation of deployment site

R&D on optical modules, further characterisation

STRAW — Strings for absorption length in water

- Measure Attenuation length in the water
- For different wavelength

detected events

Scattering and absorption separately

150 m $I(r) = \frac{I_0}{r^2} e^{\frac{-r}{\lambda_{att}}}$

- Measure Attenuation length in the water
 - For different wavelength
 - Scattering and absorption separately
- Optical properties are good!

- Understanding the 40K background
- Natural in-situ calibration with K40 possible $^{40}{
 m K} \to ^{40}{
 m Ca} + e^- + \bar{\nu}_e$
- Cross-check of λatt results, detector and site model

SDOM PMT housing Geant4 model

- Understanding the 40K background
- Natural in-situ calibration with K40 possible $^{40}{
 m K}
 ightarrow ^{40}{
 m Ca} + e^- + ar{
 u}_e$
- Cross-check of λatt results, detector and site model
- Consistent results!
- Measured Salinity matches independent ONC measurements at 3.48%

$$2.7^{+3.1}_{-0.9}\,\%$$

 $\Delta t [ns]$

- Bioluminescence is modulated with the tides
 - —> more detailed analysis and modelling ongoing
- Full publication with optical parameters and site characterization in progress

The 2nd pathfinder towards P-ONE

- Background calibration
 - PMT Spectrometer (12 PMTs w. different wavelength filters)
 - Muon spectrometer (SiPMT readout)
- Water properties
 - LiDAR (450nm)
- Standard modules
 - p/T/H and magnetic field sensors for ping signal

Timeline:

 Despite COVID19 challenges, successful deployment in fall 2020

Analysis efforts ramping up

432m - LiDAR -

408m - PMT Spec

384m - Standard M. -

312m - Standard M. -

288m - Muon Tracker -

264m - Mini Spec ·

240m - Standard M. -

168m - LiDAR -

144m - PMT Spec -

120m - WOM -

- ROV Release -

Understanding Bioluminescence — let's talk to them

— P-ONE —

Next steps towards a neutrino observatory

P-ONE — prototype line

- Construction and deployment of a complete P-ONE mooring line
- Proof and verification of;
 - detector design
 - deployment techniques
 - positioning calibration (we aim to use optical position system)
- Some project corner stones

SER

P-ONE — prototype line

- Can we do a purely optical calibration system?
 - No additional acoustic system
 - Precision optical calibration and geometry calibration with same system
 - Implement direct and automated "prompt calibration loop"

P-ONE — 10 string "Explorer"

- Timescale 2023-2025*
- 10 strings/lines
- 200 modules
- order 100m spacing
- Instrumented Volume ~1/8 km3
- Exploring physics potential for:
 - tau neutrinos
 - exotic neutrino oscillations
 - charm production

P-ONE — From "Explorer" to "Experiment"

- Once the *explorer* demonstrates success, a larger several km³ detector can be pursued, again using ONC infrastructure and expertise
- More neutrinos, better neutrinos!
- This is in conceptual design phase

Summary

- share hardware developments
- share software packages
- cross-calibration
- combined analyses
- on line sky monitor for astrophysical alerts

Boost of the exposure for cosmic accelerators up to factor 100!

P-ONExplorer

P-ONExperiment

GVD on going construction

Summary

- The northern Pacific Ocean is ideally located for a new observatory to achieve full sky coverage
 - Cascadia Basin is a suitable deep sea site
- Ocean Networks Canada is an exciting opportunity for neutrino physics
- Prototype line and 10-string Explorer are being planned and developed
- New Collaborators are welcome to join and support the efforts!

To know more, pay us a visit in

http://www.pacific-neutrino.org/

P-ONE Collaboration Members

Matteo Agostini¹, Michael Böhmer¹, Nicolai Bailly², Jeannette Bedard², Jeff Bosma², Dirk Brussow², Jonathan Cheng², Ken Clark³, Beckey Croteau², Matthias Danninger⁴, Nathan Deis², Matthew Ens⁴, Rowan Fox², Christian Fruck¹, Andreas Gärtner⁵, Roman Gernhäuser¹, Darren Grant⁶, Helen He², Felix Henningsen⁷, Kilian Holzapfel¹, Ryan Hotte², Matthias Huber¹, Reyna Jenkyns², Claudio Kopper⁶, Carsten B. Krauss⁵, Kai Krings¹, Ian Kulin², Klaus Leismüller¹, Fabio de Leo², Sally Leys⁸, Tony Lin², Paul Macoun², Stephan Meighen-Berger¹, Jan Michel⁹, Roger Moore⁵, Mike Morley², Paolo Padovani¹⁰, Laszlo Papp¹, Benoit Pirenne², Tom Qiu², Mark Rankin², Immacolata Carmen Rea¹, Elisa Resconi¹, Adrian Round², Albert Ruskey², Ryan Rutley², Christian Spannfellner¹, Jakub Stacho⁴, Ross Timmerman², Meghan Tomlin², Matt Tradewell², Michael Traxler¹¹, Andrea Turcati¹, Matt Uganecz², Seann Wagner², Yinsong Zheng², Juan Pablo Yañez⁵

Extras

