ROOT Developer Retreat: ROOT I/O

13 December 2020

ROOT I/O Person Power in 2021

- Philippe [50 %]
- Oksana [50 %]
- Jakob [50 %]
- Javier [80%, funded by the EP R&D programme]
- Max [3 FTM, funded by IRIS-HEP]
- David [HPC benchmarks, openlab]
- Few student months from GSoC (only 2 months / student this year!), GSoD
- Plus contributions from Vincenzo, Danilo, CERN storage team, and others

There is interest from beyond the ROOT core team in I/O. We should try to leverage on that by suggesting proper "satellite tasks".

ROOT I/O Areas of Work

- 1. Core I/O & TTree: maintenance, user support, bug fixes, support for critical new features
- 2. **RNTuple**: first exploitation and adoption, performance engineering, schema evolution
- 3. **Cross-cutting issues**: compression, error handling, benchmarks

Task classification

Difficulty:	starter project	\rightarrow	core team	\rightarrow	R&D
Urgency:	nice to have	\rightarrow	important	\rightarrow	essential (target <= v6.28)
Progress:	drawing board	\rightarrow	well underway	\rightarrow	almost done

Core Business

- 1. User support and bug fixes (forum, bug tracker, etc.) Difficulty: core team Urgency: essential
- 2. Bug fixes

Difficulty: core team Urgency: essential

3.Thread-safety and performance improvements: including writing into TBufferFileDifficulty: core teamUrgency: essentialProgress: planned

~2 FTME

Core Business

4.	TBufferFile larger than 1G	В		
	Difficulty: core team	Urgency: essential	Progress: started	~2 FTME
5.	Schema Evolution Improvem	ient		
	Difficulty: core team	Urgency: essential	Progress: started	~2 FTME
6.	· · · · ·	t: shared_ptr, optional, varian	it, nested std::array	
	(partially uncovered)			
	Difficulty: core team	Urgency: important	Progress: planned	~4.5 FTME

TTree: Integration

- 1.**RDataFrame Bulk I/O DataSource** (planned to be addressed more fundamentally in RDF)Difficulty: core teamUrgency: importantProgress: planned~2 FTME
- Direct path TTree → Bulk I/O → Awkward arrays: provides a "fast" connection between ROOT I/O and the Python world
 Difficulty: core team
 Urgency: nice to have
 Progress: planned
 ~1 FTME

Core I/O: Stretch Goals

- 1.Improve performance of TBufferFile: remove virtual function callsDifficulty: advancedUrgency: importantProgress: planned~1 FTME
- I/O of interpreted classes: avoid having to spell out all used class template instances (somewhat blocker for ROOT7 histograms) Difficulty: advanced
 Urgency: important
 Progress: planned
 ~1 FTME
- I/O of interpreted collections: allow streaming of all interpreted classes
 For experiment relying heavily on class template, including potentially ROOT v7
 Difficulty: advanced
 Urgency: important
 Progress: planned
 ~2 FTME
- 4.
 Double32_t improvements, customization of vector<Double32_t>, similar feature for integer

 Difficulty: advanced
 Urgency: nice to have
 Progress: planned
 ~1+2 FTME

RNTuple Core Business

- 1. Optimize footer format for large data sets (files >10G)

 Difficulty: core team
 Urgency: essential

 Progress: drawing board
 ~2 FTME
- 2.File format backwards and forward compatibility: includes format specificationDifficulty: core teamUrgency: essentialProgress: started~3 FTME
- 3. Finalization of the initial I/O type system: type casting rules, schema evolution, test of complex classesDifficulty: core teamUrgency: importantProgress: drawing board~5 FTME
- 4. Attribute API: storage of namespace'd key-value pairs, such as "root.timestamp", "cms.uuid" Difficulty: starter project Urgency: important Progress: drawing board ~1.5 FTME

RNTuple Usability and Performance I/II

1.	Friends and chains: virtual storage backends					
	Difficulty: core team	Urgency: essential	Progress: almost done	~1 FTME		
2.	TTree to RNTuple converter:	disk-to-disk conversion as	in hadd			
	Difficulty: starter project	Urgency: essential	Progress: drawing board	~1 FTME		
3.	Fast merging, hadd support					
	Difficulty: core team	Urgency: essential	Progress: almost done	~1 FTME		
4.	RBrowser integration					
	Difficulty: starter project	Urgency: important	Progress: well underway	~1 FTME		

RNTuple Usability and Performance II/II

- 5.User-facing bulk API: retrieve spans of entriesDifficulty: core teamUrgency: importantProgress: drawing board~1 FTME
- 6.**RDF optimization**: use of new RVec, align event ranges to clusters, use of bulk APIDifficulty: core teamUrgency: importantProgress: drawing board~2 FTME
- 7.
 DAOS (object store) backend including "data mover"

 Difficulty: core team
 Urgency: important
 Progress: well underway
 ~2.5 FTME
- 8.Buffered writes: cluster layout optimization, multi-threaded compressionDifficulty: core teamUrgency: importantProgress: drawing board~2.5 FTME

RNTuple First Exploitation I/II

1.	CMSSW nanoAOD generation in RNTuple format				
	Difficulty: starter project	Urgency: essential	Progress: drawing board	~3 FTME	
2.	Comparison with HDF5 on H	PC			
	Difficulty: starter project	Urgency: essential	Progress: drawing board	~3 FTME	
3.	RNTupleLite: C API for basic read support without libCore dependency			[Oksana]	
	Difficulty: core team	Urgency: important	Progress: well underway	~2 FTME	
4.	RNTuple PODIO backend				
	Difficulty: starter project	Urgency: important	Progress: drawing board	~2 FTME	

RNTuple First Exploitation II/II

- 5.High-speed pipe into ML tools: should this be done through RDF?Difficulty: core teamUrgency: importantProgress: drawing board~4 FTM
- 6. Data layout and handling on GPUs (Nvidia DirectStorage, Alpaka)Difficulty: R&DUrgency: nice to haveProgress: drawing board~6 FTME

RNTuple Stretch Goals

- 1. Fine-grained multi-threading: concurrent reading on shared cluster buffersDifficulty: R&DUrgency: importantProgress: drawing board~4 FTME
- 2.Direct data exchange with Apache ArrowDifficulty: core teamUrgency: nice to haveProgress: drawing board~3 FTME
- 3. Backend for other object stores (e.g. S3)Difficulty: R&DUrgency: nice to haveProgress: drawing board~4 FTME

Error Handling

- 1.Validate crash recovery in RNTupleDifficulty: starter projectUrgency: importantProgress: drawing board~2 FTME
- 2.**RNTuple error injection testing**
Difficulty: starter projectUrgency: importantProgress: drawing board~2 FTME

ROOT Compression Library/Engine

- 1. Review compression settings interface overhaulDifficulty: advancedUrgency: importantProgress: planned~1 FTME
- Create ROOTZip library (based on RZip object library) to make easier compression settings and debugging
 Difficulty: advanced
 Urgency: important
 Progress: planned
 ~2 FTME

ROOT Lossless Compression Algorithms

- 1.Update zlib-cloudflare with zlib-ng (it has already zlib-cloudflare patches upstreamed)Difficulty: core teamUrgency: importantProgress: planned~2 FTME
- 2. Investigate ZSTD byte-stream compression and test it for RNTuple and TTree (e.g. BYTE_STREAM_SPLIT encoding from Parquet, which improves a compression ratio and compression speed for certain types of floating-point data where the upper-most bytes of a values do not change much) Difficulty: starter project Urgency: nice to have Progress: drawing board ~3 FTME
- Investigation how compression/decompression speed of LZMA could be improved (e.g. Fast-LZMA2, SSE4.2/AVX2)
 Difficulty: core team Urgency: important Progress: planned ~0.5 FTME
- Investigate existing and experiment with a new compression schemas, such as "heuristic mixed compression" for RNTuple
 Difficulty: starter project
 Urgency: important
 Progress: drawing board
 ~3 FTME

ROOT Lossy Algorithms (Floating Point)

- 1.Investigation of lossy compression through ZFP in ROOT (it was already tested in CMSSW for
NanoAODs, but never for RNTuple in ROOT)Difficulty: starter projectUrgency: importantProgress: planned~3 FTME
- 2.Incorporate lossy compression engine (Accelogic)Difficulty: core teamUrgency: importantProgress: planned~ 1 FTME

Investigation of ROOT I/O Performance

- 1. Implementation/review of performance metrics for better I/O benchmarking (e.g. TreePerfStats or the newer root-readspeed by Enrico)

 Difficulty: core team
 Urgency: important
 Progress: planned
 ~ 5 FTME
- 2.Performance continuous testing for ROOT I/O critical parts: especially for RNTuple (e.g. rootbench)Difficulty: core teamUrgency: importantProgress: planned~ 2 FTME
- 3.Multi-client / shared storage performance behavior in collaboration with XRootD and EOS teamsDifficulty: core teamUrgency: importantProgress: planned~ 1 FTME

Discussion

Final Remarks

- It's time to get adoption and feedback from experiments for RNTuple
- Oksana: implement/test a new functionality for RNTuple at the first priority, after TTree
- Oksana: think and show examples how to interconnect different ROOT parts with RNTuple: example of modern ML pipeline or modern analysis pipeline and etc.
 - It could help to collect the new requirements for IO and prioritize tasks