
ROOT Developer Retreat:
ROOT I/O
13 December 2020

ROOT I/O Person Power in 2021
● Philippe [50 %]

● Oksana [50 %]

● Jakob [50 %]

● Javier [80%, funded by the EP R&D programme]

● Max [3 FTM, funded by IRIS-HEP]

● David [HPC benchmarks, openlab]

● Few student months from GSoC (only 2 months / student this year!), GSoD

● Plus contributions from Vincenzo, Danilo, CERN storage team, and others

There is interest from beyond the ROOT core team in I/O.
We should try to leverage on that by suggesting proper “satellite tasks”.

ROOT I/O Areas of Work

1. Core I/O & TTree: maintenance, user support, bug fixes, support for critical new features

2. RNTuple: first exploitation and adoption, performance engineering, schema evolution

3. Cross-cutting issues: compression, error handling, benchmarks

Task classification

Difficulty: starter project → core team → R&D
Urgency: nice to have → important → essential (target <= v6.28)
Progress: drawing board → well underway → almost done

Core Business
1. User support and bug fixes (forum, bug tracker, etc.)

Difficulty: core team Urgency: essential

2. Bug fixes
Difficulty: core team Urgency: essential

3. Thread-safety and performance improvements: including writing into TBufferFile

Difficulty: core team Urgency: essential Progress: planned ~2 FTME

Core Business
4. TBufferFile larger than 1GB

Difficulty: core team Urgency: essential Progress: started ~2 FTME

5. Schema Evolution Improvement
Difficulty: core team Urgency: essential Progress: started ~2 FTME

6. Advance C++ type support: shared_ptr, optional, variant, nested std::array
(partially uncovered)
Difficulty: core team Urgency: important Progress: planned ~4.5 FTME

TTree: Integration
1. RDataFrame Bulk I/O DataSource (planned to be addressed more fundamentally in RDF)

Difficulty: core team Urgency: important Progress: planned ~2 FTME

2. Direct path TTree → Bulk I/O → Awkward arrays: provides a “fast” connection between ROOT I/O

and the Python world

Difficulty: core team Urgency: nice to have Progress: planned ~1 FTME

Core I/O: Stretch Goals
1. Improve performance of TBufferFile: remove virtual function calls

Difficulty: advanced Urgency: important Progress: planned ~1 FTME

2. I/O of interpreted classes: avoid having to spell out all used class template instances
(somewhat blocker for ROOT7 histograms)
Difficulty: advanced Urgency: important Progress: planned ~1 FTME

3. I/O of interpreted collections: allow streaming of all interpreted classes
For experiment relying heavily on class template, including potentially ROOT v7
Difficulty: advanced Urgency: important Progress: planned ~2 FTME

4. Double32_t improvements, customization of vector<Double32_t>, similar feature for integer
Difficulty: advanced Urgency: nice to have Progress: planned ~1+2 FTME

RNTuple Core Business
1. Optimize footer format for large data sets (files >10G)

Difficulty: core team Urgency: essential Progress: drawing board ~2 FTME

2. File format backwards and forward compatibility: includes format specification

Difficulty: core team Urgency: essential Progress: started ~3 FTME

3. Finalization of the initial I/O type system: type casting rules, schema evolution, test of complex classes

Difficulty: core team Urgency: important Progress: drawing board ~5 FTME

4. Attribute API: storage of namespace’d key-value pairs, such as “root.timestamp”, “cms.uuid”

Difficulty: starter project Urgency: important Progress: drawing board ~1.5 FTME

RNTuple Usability and Performance I/II

1. Friends and chains: virtual storage backends

Difficulty: core team Urgency: essential Progress: almost done ~1 FTME

2. TTree to RNTuple converter: disk-to-disk conversion as in hadd

Difficulty: starter project Urgency: essential Progress: drawing board ~1 FTME

3. Fast merging, hadd support
Difficulty: core team Urgency: essential Progress: almost done ~1 FTME

4. RBrowser integration
Difficulty: starter project Urgency: important Progress: well underway ~1 FTME

RNTuple Usability and Performance II/II

5. User-facing bulk API: retrieve spans of entries

Difficulty: core team Urgency: important Progress: drawing board ~1 FTME

6. RDF optimization: use of new RVec, align event ranges to clusters, use of bulk API

Difficulty: core team Urgency: important Progress: drawing board ~2 FTME

7. DAOS (object store) backend including “data mover”
Difficulty: core team Urgency: important Progress: well underway ~2.5 FTME

8. Buffered writes: cluster layout optimization, multi-threaded compression

Difficulty: core team Urgency: important Progress: drawing board ~2.5 FTME

RNTuple First Exploitation I/II

1. CMSSW nanoAOD generation in RNTuple format [Max]

Difficulty: starter project Urgency: essential Progress: drawing board ~3 FTME

2. Comparison with HDF5 on HPC

Difficulty: starter project Urgency: essential Progress: drawing board ~3 FTME

3. RNTupleLite: C API for basic read support without libCore dependency [Oksana]
Difficulty: core team Urgency: important Progress: well underway ~2 FTME

4. RNTuple PODIO backend

Difficulty: starter project Urgency: important Progress: drawing board ~2 FTME

RNTuple First Exploitation II/II

5. High-speed pipe into ML tools: should this be done through RDF?

Difficulty: core team Urgency: important Progress: drawing board ~4 FTM

6. Data layout and handling on GPUs (Nvidia DirectStorage, Alpaka)

Difficulty: R&D Urgency: nice to have Progress: drawing board ~6 FTME

RNTuple Stretch Goals

1. Fine-grained multi-threading: concurrent reading on shared cluster buffers

Difficulty: R&D Urgency: important Progress: drawing board ~4 FTME

2. Direct data exchange with Apache Arrow
Difficulty: core team Urgency: nice to have Progress: drawing board ~3 FTME

3. Backend for other object stores (e.g. S3)
Difficulty: R&D Urgency: nice to have Progress: drawing board ~4 FTME

Error Handling

1. Validate crash recovery in RNTuple
Difficulty: starter project Urgency: important Progress: drawing board ~2 FTME

2. RNTuple error injection testing
Difficulty: starter project Urgency: important Progress: drawing board ~2 FTME

ROOT Compression Library/Engine

1. Review compression settings interface overhaul
Difficulty: advanced Urgency: important Progress: planned ~1 FTME

2. Create ROOTZip library (based on RZip object library) to make easier compression settings and
debugging
Difficulty: advanced Urgency: important Progress: planned ~2 FTME

ROOT Lossless Compression Algorithms
1. Update zlib-cloudflare with zlib-ng (it has already zlib-cloudflare patches upstreamed)

Difficulty: core team Urgency: important Progress: planned ~2 FTME

2. Investigate ZSTD byte-stream compression and test it for RNTuple and TTree (e.g. BYTE_STREAM_SPLIT
encoding from Parquet, which improves a compression ratio and compression speed for certain types of
floating-point data where the upper-most bytes of a values do not change much)
Difficulty: starter project Urgency: nice to have Progress: drawing board ~3 FTME

3. Investigation how compression/decompression speed of LZMA could be improved (e.g. Fast-LZMA2,
SSE4.2/AVX2)
Difficulty: core team Urgency: important Progress: planned ~0.5 FTME

4. Investigate existing and experiment with a new compression schemas, such as “heuristic mixed
compression” for RNTuple

Difficulty: starter project Urgency: important Progress: drawing board ~3 FTME

ROOT Lossy Algorithms (Floating Point)

1. Investigation of lossy compression through ZFP in ROOT (it was already tested in CMSSW for
NanoAODs, but never for RNTuple in ROOT)

Difficulty: starter project Urgency: important Progress: planned ~3 FTME

2. Incorporate lossy compression engine (Accelogic)

Difficulty: core team Urgency: important Progress: planned ~ 1 FTME

Investigation of ROOT I/O Performance

1. Implementation/review of performance metrics for better I/O benchmarking (e.g. TreePerfStats or the
newer root-readspeed by Enrico)
Difficulty: core team Urgency: important Progress: planned ~ 5 FTME

2. Performance continuous testing for ROOT I/O critical parts: especially for RNTuple (e.g. rootbench)

Difficulty: core team Urgency: important Progress: planned ~ 2 FTME

3. Multi-client / shared storage performance behavior in collaboration with XRootD and EOS teams

Difficulty: core team Urgency: important Progress: planned ~ 1 FTME

Discussion

Final Remarks

● It’s time to get adoption and feedback from experiments for RNTuple

● Oksana: implement/test a new functionality for RNTuple at the first priority, after TTree

● Oksana: think and show examples how to interconnect different ROOT parts with RNTuple:

example of modern ML pipeline or modern analysis pipeline and etc.

○ It could help to collect the new requirements for IO and prioritize tasks

