
Web-based graphics and GUI

Sergey Linev

15.12.2020

• Highlights from the past year

• Where to go?

Client Server
JavaScript C++

Model

TBufferJSON

RWebWindow

THttpServerWebWindowHandle

JSONModel

View

Controller
Application code

OpenUI5

JSROOT

ROOT

websocket

15.12.2020 S.Linev, web-based graphics and GUI 2

RWebWindow

• Gateway to web-based displays in ROOT

• Launch web browser(s)
– special support for Chrome and Firefox
– headless mode, used for batch mode

• Local web displays
– Chromium Embedded Framework CEF
– Qt5 QWebEngine – also chrome-based

• Communication via websockets
• Openui5 support

– any other GUI framework can be used

• Offline support
– client code can be used without running ROOT

15.12.2020 S.Linev, web-based graphics and GUI 3

RWebWindow

THttpServer

JSROOT
Open
UI5

Client
JS code

User
widgets

ROOT
widgets

web browser

C++ application

JSON

JSROOT
Open
UI5

Client
JS code

web browser

JSON

RWebWindow plans

• Connection sharing between widgets
– prototyped now with RFileDialog in RBrowser
– ~1 month

• Integration with JupyterLab
– reuse web services
– ~2 months

• MDI inside single web-browser page (optional)
– handle many different widgets (canvases, browsers, fitpanel) in same browser

window
– example: https://root.cern/js/latest/api.htm#url_syntax_flexible_layout

– use same connection, same context, do not reload JS again
– ~3 months

15.12.2020 S.Linev, web-based graphics and GUI 4

https://root.cern/js/latest/api.htm#url_syntax_flexible_layout

RWebWindow – batch mode

• Already working:
– Google Chrome, but requires http
– Mozilla Firefox, also requires http

• Can be implemented:
– Node.js - based solution

• text/SVG/WebGL rendering is not trivial
• use external tools like ImageMagic?

– CEF
• uses X11, can be replaced by other implementation
• requires custom compilation, extremely large and introduces many dependencies

• Main unresolved issue for 2020
• Work estimation: ~3-6 months

15.12.2020 S.Linev, web-based graphics and GUI 5

RWebWindow – batch mode

• Already working:
– Google Chrome, but requires http without http!
– Mozilla Firefox, also requires http skipped, but hope to get soon

• Can be implemented:
– Node.js - based solution working!

• text/SVG/WebGL rendering with system-provided libs
• use external tools like ImageMagic? not necessary!

– CEF is also working now!
• uses X11 by default, can be replaced by Ozone
• requires custom compilation, can be solved by LCG builds

• Main unresolved issue for 2020

• Work estimation: ~2 months

15.12.2020 S.Linev, web-based graphics and GUI 6

ROOT components using webgui

• TCanvas

• RCanvas

• RBrowser

• REve

• RFitPanel

• RGeomViewer

15.12.2020 S.Linev, web-based graphics and GUI 7

RCanvas

• Full redesign of TCanvas class

• No gPad!
– threads safety

• RDrawable
– graphical primitive
– attributes
– reference data object

• RPadBase
– maintain list of primitives

15.12.2020 S.Linev, web-based graphics and GUI 8

#include "ROOT/RCanvas.hxx“

#include "ROOT/RHistDrawable.hxx“

using namespace ROOT::Experimental;

void draw_rh1()

{

RAxisConfig xaxis(25, 0., 10.);

auto pHist = std::make_shared<RH1D>(xaxis);

pHist->Fill(5);

auto canvas = RCanvas::Create("Canvas Title");

auto draw1 = canvas->Draw(pHist);

draw1->AttrLine().SetColor(RColor::kRed).SetWidth(2);

canvas->Show();

}

$ROOTSYS/tutorials/v7/draw_rh1.cxx

https://root.cern/doc/master/draw__rh1_8cxx.html

RCanvas

15.12.2020 S.Linev, web-based graphics and GUI 9

root $ROOTSYS/tutorials/v7/text.cxx root $ROOTSYS/tutorials/v7/lineWidth.cxx root $ROOTSYS/tutorials/v7/markerStyle.cxx

root $ROOTSYS/tutorials/v7/draw_subpads.cxx

root $ROOTSYS/tutorials/v7/draw_legend.cxx

https://root.cern/doc/master/text_8cxx.html
https://root.cern/doc/master/lineWidth_8cxx.html
https://root.cern/doc/master/markerStyle_8cxx.html
https://github.com/root-project/root/blob/master/tutorials/v7/draw_subpads.cxx
https://root.cern/doc/master/draw__legend_8cxx.html

15.12.2020 S.Linev, web-based graphics and GUI 10

15.12.2020 S.Linev, web-based graphics and GUI 11

15.12.2020 S.Linev, web-based graphics and GUI 12

RCanvas

• Separate data (e.g. histogram) from view attributes

• Data can be shared via std::shared_ptr
– provide I/O support, but only inside RCanvas

• Any attribute is optional
– value can be provided with CSS-like syntax

– default values provided in attribute classes

• Exactly same code for visual and batch mode

15.12.2020 S.Linev, web-based graphics and GUI 13

RCanvas plans

• Basic classes: RDrawable, RPadBase, RAttrBase, RColor, …
– review API, ~2 months, mostly done!

• RStyle, CSS parsing
– ~1 month, first prototype is there

• RHistDrawable (C++ & JS)
– ~2 months, server-side pre-rendering is implemented!

• RGraphDrawable (C++ & JS)
– ~1 month, not done – missing RGraph

• RPalette, RFrame, RLegend, RLatex, other primitives
– ~3 months, many are done or prototyped!

15.12.2020 S.Linev, web-based graphics and GUI 14

RCanvas testing

• Two kinds of tests are feasible:

– batch jobs producing SVG images

• either using headless browser mode (ROOT batch mode)

• or run JavaScript code in Node.js
– like https://github.com/linev/jsroot-test

• ~1 month

– interactivity tests

• using tools like WebDriver

• ~3 months

• do not require deep knowledge of ROOT internals
– good job for summer student

15.12.2020 S.Linev, web-based graphics and GUI 15

https://github.com/linev/jsroot-test

RBrowser
• Browse:

– file system

– ROOT files

– TTree

• Display objects with:

– RCanvas (ROOT7)

– TWebCanvas (ROOT6)

• Edit text files

– openui5 code editor

• View images

• Scalable hierarchy browser

– load only visible items

• RBrowsable adapter classes:

– object management

– iterators over sub-elements

– support old
TObject::Browse(TBrowser*)

– custom client info

15.12.2020 S.Linev, web-based graphics and GUI 16

root $ROOTSYS/tutorials/v7/browser.cxx

https://root.cern/doc/master/browser_8cxx.html

RBrowser plans

• RBrowsable

– revise API

– implement adapters for major ROOT classes

– ~2 months

• Provide RFileDialog

– to be used in different components

• Overall work estimation: ~4 months

15.12.2020 S.Linev, web-based graphics and GUI 17

Eve7 and FireworksWeb

15.12.2020 S.Linev, web-based graphics and GUI 18

Online event display

• Hierarchy browser

• 3D views

• Projection views

• Table views

• Multiple clients

• Offline mode
https://linev.github.io/eve7/

https://linev.github.io/eve7/

15.12.2020 S.Linev, web-based graphics and GUI 19

15.12.2020 S.Linev, web-based graphics and GUI 20

15.12.2020 S.Linev, web-based graphics and GUI 21

15.12.2020 S.Linev, web-based graphics and GUI 22

REve plans for 2021
• Setup FireworksWeb test servers at CERN, Fermilab, and UCSD for beta testing

– Implement automatic play loop of event from CMS data file
– Dio performance test with Chrome development tools

• Improve look and performance of physics collection item viewer
– show/hide items table on collection tree node open/close

• Window management
– add a possibility to create a new view (GL or table) in runtime through menu bar

• Introduce configuration. Add a possibility to:
– created views
– collections (filters, color attributes, proxy builder attributes)
– table configurations (e.g. table column expressions)

• Explore new solutions of running event displays outside the firewall. Current workarounds are ssh tunnel or
https with node certificate. Are there any other more convenient options?
– web token (macaroons)
– Web services, anything else?

• Integrate RenderCore as the second render engine to EVE-7
– Faster rendering of tracks as polygons
– High precision pickling for any size of viewing volume.
– Rendering of High Granularity Calorimeter for CMS experiment with shaders.

• grate job of Alja and Matevz!

15.12.2020 S.Linev, web-based graphics and GUI 23

RGeomViewer
• Reuse eve7 and JSROOT code

• Browse hierarchy

• Search nodes

• Individual volume display

• Transparency

• Wireframes

• Offline mode

15.12.2020 S.Linev, web-based graphics and GUI 24

root $ROOTSYS/tutorials/eve7/viewer.cxx

https://github.com/root-project/root/blob/master/tutorials/eve7/viewer.C

RGeomViewer plans

• Beta quality:

– most functionalities are there

– need more testing/debugging

• To do:

– integrate with RBrowser

• Work estimation:

– ~2 months

15.12.2020 S.Linev, web-based graphics and GUI 25

RFitPanel
• Access fit functionality via web

widget
– very similar to original TFitPanel

– use ROOT6 data classes for fitting

– improve usability

• Example of model/view separation

– model is C++ class

– converted to/from JSON

– used as is for view configuration

• Display fit results in TCanvas
– x11 or web-based

15.12.2020 S.Linev, web-based graphics and GUI 26

root --web $ROOTSYS/tutorials/v7/fitpanel6.cxx

https://root.cern/doc/master/fitpanel6_8cxx.html

RFitPanel plans

• Beta quality, needs to be tested

• Work estimation:

– ~0.5 month to finalize all small issues

15.12.2020 S.Linev, web-based graphics and GUI 27

Overall remarks

• Huge amount of work to complete

– difficult promote to users before

• That is our priority list?

– RBrowser (~4 months)

– RCanvas (~9 months)

– rock-solid batch mode (3+ months)

– the rest (6+ months)

15.12.2020 S.Linev, web-based graphics and GUI 28

JSROOT v5 -> v6

• Major incompatible code upgrade

• Use many ES6 features like Promises and partially Classes

• Skip IE support

• Resolve WebGL rendering in batch mode

• Resolve many internal workarounds

• Follow naming convention

• Provide better code documentation

• To be completed very soon – by 6.24 release

15.12.2020 S.Linev, web-based graphics and GUI 29

How motivate users to use webgui?

• Many different components already there

– but nobody care

• While current solutions continues to work

– no any reasons to try something else inside ROOT

15.12.2020 S.Linev, web-based graphics and GUI 30

ROOT components using webgui

• TCanvas

• RCanvas

• RBrowser

• REve

• RFitPanel

• RGeomViewer

15.12.2020 S.Linev, web-based graphics and GUI 31

How motivate users to use webgui?

• Immediate steps (6.24):
– officially release TWebCanvas canvas

• „root --web hsimple.C“ works since several years

– include full-functional implementation TWebCanvasFull in ROOT
• provides most of interactive features

• only this class make sense for users for production use

• can be „official“ QtRoot interface, which works on all Qt-supported platforms

– personal reasons
• reduce maintenance efforts in two repositories

• Minimal efforts from users to try

• The only way to convince them that technology works

• Improve many components which are also used with ROOT7

15.12.2020 S.Linev, web-based graphics and GUI 32

TWebCanvas
• Show TCanvas in browser

– web-based TCanvasImp

• Reuse JSROOT code

• Limited support of TVirtualX
– custom Paint() may work

15.12.2020 S.Linev, web-based graphics and GUI 33

root --web $ROOTSYS/tutorials/tree/parallelcoord.C

root --web $ROOTSYS/tutorials/hsimple.C

https://root.cern/doc/master/parallelcoord_8C.html
https://root.cern/doc/master/hsimple_8C.html

TWebCanvas with Qt5
• go4 v6.0

– developed since 1999

– http://go4.gsi.de

• Qt5-based GUI

– QtROOT for ROOT graphics

– since a while not working on Mac
(missing x11 support)

• Solution:

– embed TWebCanvas in
QWebEngine

– provide support for custom go4
classes

• Same code for:

– Linux/Mac/Windows

• Any ROOT web widget can be
embed in Qt5:

– root --web=qt5 …
15.12.2020 S.Linev, web-based graphics and GUI 34

http://go4.gsi.de/

How motivate users to use webgui?

• Short/mid-term steps (6.26):

– promote ROOT6 classes usage with RCanvas

• provide examples, test macros, tutorials

– TObjectDrawable optionally brings CSS usage

• not available in TWebCanvas

• provide specialization for TH1/TGraph classes

– Our benefits

• let improve RCanvas/RStyle/RAttr classes without introducing RHist classes

– Actually, RHist plotting is 90% reuse of JSROOT code for
TH1/TH2/TH3 classes

• improving v6, we automatically improve v7

15.12.2020 S.Linev, web-based graphics and GUI 35

How motivate users to use webgui?

• Mid-term steps (6.26 – 6.28)

– review RAttr class – central of importance in whole design

– review / improve RColor (better mapping to CSS)

– release RCanavs and RBrowser (no Experimental)

15.12.2020 S.Linev, web-based graphics and GUI 36

Usability

• Can we compete with compact python code?

– we can provide several small macros which solves typical user
problem with single call:

• create canvas, add histogram to canvas, display canvas

• „replacement“ for TObject::Draw functionality

– promote usage of „preconfigured“ CSS files

• provide „experiment“ default styles for hist colors, axes ticks, grids, margins

• extend CSS functionality

15.12.2020 S.Linev, web-based graphics and GUI 37

RCanvas example
#include "ROOT/RCanvas.hxx“

#include "ROOT/RHistDrawable.hxx"

using namespace ROOT::Experimental;

void draw() {

// Create the histogram.

RAxisConfig xaxis("x", 10, 0., 1.);

RAxisConfig yaxis("y", {0., 1., 2., 3., 10.});

auto pHist = std::make_shared<RH2D>(xaxis, yaxis);

// draw histogram

auto canvas = RCanvas::Create("Canvas Title");

canvas->Draw(pHist);

canvas->Show();

}

15.12.2020 S.Linev, web-based graphics and GUI 38

RStyle example
auto style = RStyle::Parse(

"frame {" // select type frame for RFrame

" gridx: true;" // enable grid drawing

" gridy: true;"

" ticksx: 2;" // enable ticks drawing on both sides

" ticksy: 2;"

" x_labels_size: 0.05;" // below 1 is scaling factor for pad height

" y_labels_size: 20;" // just a font size in pixel

" y_labels_color_name: green;" // and name labels color

"}");

canvas->UseStyle(style);

RDirectory::Heap().Add("style", style); // required to keep style alive

15.12.2020 S.Linev, web-based graphics and GUI 39

Usability

• Can we compete with powerful plot engines as matplot?

– difficult from the beginning

– focus on interactivity and multithreading

– address special user needs

• different log scales (done)

• better axis labels and title positions (partially done)

• custom fonts support

• custom encoding supports (not only latin)

• special draw style support (XKCD, see issue #6682)

• …

15.12.2020 S.Linev, web-based graphics and GUI 40

Usability

• Integration with JupyterLab

– use Jupyter web server

– conceptually should work

– luck of resources

– priority?

15.12.2020 S.Linev, web-based graphics and GUI 41

Final summary

• I see no reasons to wait longer

• We are loosing potential users

• Modern techonlogies aging very fast

15.12.2020 S.Linev, web-based graphics and GUI 42

