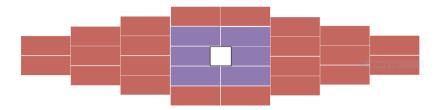


Mighty Tracker Pattern Recognition (Standalone)


Lucia Grillo and Oscar Augusto

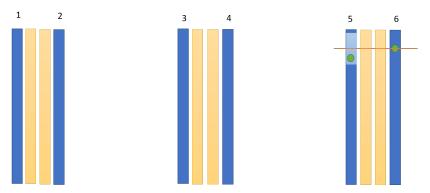
<ロト (四) (三) (三) (三)

December 15, 2020

Introduction

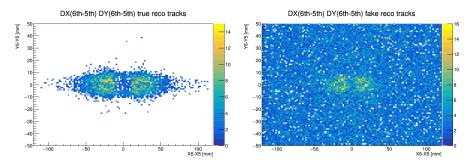
- This is study is a continuation of the summer student Jiazhen Tang work (presentation)
- Two samples with 21 events U2 (with and without electrons)
- $\bullet~Luminosity~1.5\times10^{34}/{\rm cm^2/s}$
- This study considers the inner and middle sections (purple and brown)

イロト イヨト イヨト イヨ

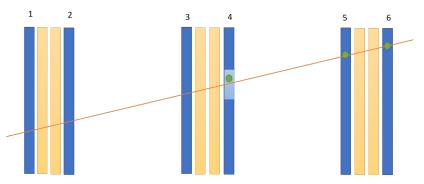

Optimization

Optimization using the hits from selected tracks:

- True reconstructable track leaves hits in all 6 layers
- True track momentum above 5 GeV/c
- True track in pseudorapidity acceptance (2 $<\eta<$ 5)

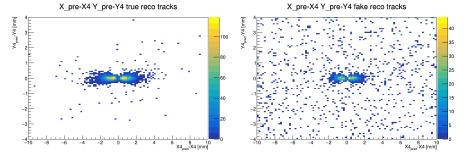

• • • • • • • • • • • •

Combination of hits between 5th-6th layers (x and Y)


• The position (X and Y coordinates) of the 6th hit is used as reference and a search window is defined

Combination of hits between 5th-6th layers

- Well defined region for the true reconstructed tracks
- Limits defined as $\Delta x < 110$ mm and $\Delta y < 15$ mm

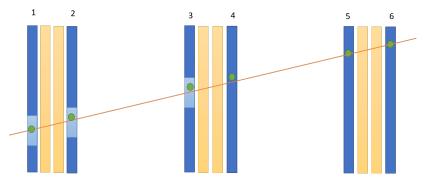

Combination of hits between 4th-5th-6th layers (x and Y)

• Linear extrapolation using the information of the 5th-6th hits is performed to predict the position on the 4th layer (X and Y coordinates)

イロト イヨト イヨト

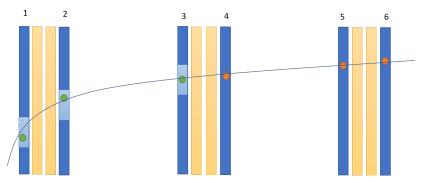
Combination of hits between 4th-5th-6th layers

• Linear extrapolation from the hits in the 5th and 6th layers:


 $y_{predicted} = (685.0/209.0) * Y5 - (476.0/209.0) * Y6$

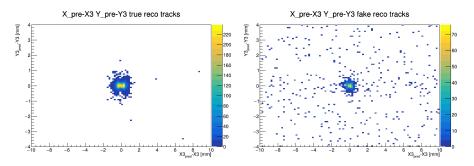
defined in a similar way for X.

- Limits defined as $\Delta x < 4$ mm and $\Delta y < 0.7$ mm
- Y predictions for the previous layers (1st-2nd-3th) were also estimated in the same way.


イロト イヨト イヨト イヨ

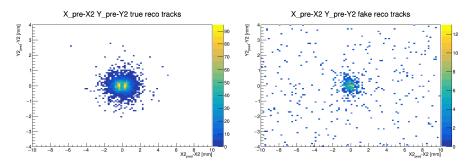
Combination of hits between 1st-2nd-3rd-4th-5th-6th layers (Y)

• For the Y coordinate, a linear extrapolation using the information of the 5th-6th hits is performed to predict the position on the 1st-2nd-3rd layers


Combination of hits between 1st-2nd-3rd-4th-5th-6th layers (X)

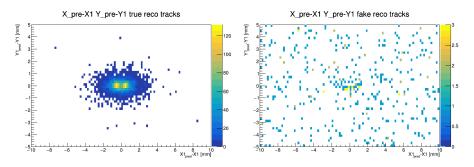
- Parabolic approximation to predict the X coordinate $(Z = aX^2 + bX + c)$
- The minima is requested to be before the first layer and 4-5-6 hits are requested to be on the same side of the parabola

Image: A math the second se


Combination of hits between 1st-2nd-**3rd**-4th-5th-6th layers

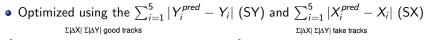
• Limits defined as $\Delta Y < 0.80$ mm and $\Delta X < 1.5$ mm

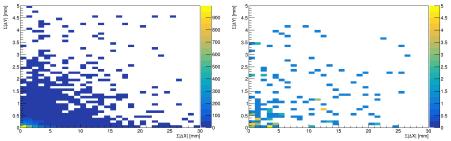
A D F A B F A B F


Combination of hits between 1st-**2nd**-3rd-4th-5th-6th layers

• Limits defined as $\Delta Y < 1.5$ mm and $\Delta X < 3.0$ mm

・ロト ・日下・ ・ ヨト・


Combination of hits between **1st**-2nd-3rd-4th-5th-6th layers



• Limits defined as $\Delta Y < 2.0$ mm and $\Delta X < 5.0$ mm

イロト イヨト イヨト

Additional selection (SX and SY)

The tables on the next slides will show the efficiencies and fake rates for 4 possible selections:

- No requirements on SX and SY
- $\bullet~SX < 10~mm$ and SY < 2~mm
- $\bullet~SX < 15~mm$ and SY < 3~mm
- $\bullet~SX<20~mm$ and SY<4~mm

イロト イヨト イヨト イヨ

Efficiency and fake rate comparison for tracks with p> 5GeV and 2< η <5

Min. P	Acc	True e ⁻	SX	SY	Eff.	TrueReco/	Fake Rate	Fake
(GeV)	-	(%)	(mm)	(mm)	(%)	True	(%)	-
5	1	16.2	10	2	89.6	4560/5089	1.6	76
5	1	0.0	10	2	93.0	3968/4266	1.7	68
5	1	16.2	15	3	93.7	4767/5089	2.4	116
5	1	0.0	15	3	95.9	4091/4266	2.4	102
5	1	16.2	20	4	94.9	4832/5089	2.8	138
5	1	0.0	20	4	96.7	4126/4266	2.8	119
5	1	16.2	-	-	96.3	4902/5089	3.1	156
5	1	0.0	-	-	97.5	4159/4266	3.1	131

Table: Comparison for true tracks with momentum > 5 GeV and in the acceptance(eta) using samples with and without electrons

- A reconstructable true track has one hit in each layer, p> 5GeV and 2< η <5.
- The efficiency numerator is the number of reconstructed tracks which correspond to a MC particle

Efficiency and fake rate comparison for all tracks (no momentum or η requirement)

Min. P	Acc	True e ⁻	SX	SY	Eff.	TrueReco/	Fake Rate	Fake
(GeV)	-	(%)	(mm)	(mm)	(%)	True	(%)	-
0	0	26.9	10	2	65.9	6122/9292	9.4	636
0	0	0.0	10	2	74.8	5079/6788	4.4	236
0	0	26.9	15	3	72.8	6765/9292	11.0	834
0	0	0.0	15	3	80.7	5476/6788	5.5	320
0	0	26.9	20	4	76.4	7098/9292	11.6	933
0	0	0.0	20	4	83.6	5676/6788	6.0	365
0	0	26.9	-	-	80.0	7430/9292	12.3	1039
0	0	0.0	-	-	86.5	5871/6788	6.3	395

Table: Comparison for true tracks without momentum and eta requirements using samples with and without electrons

- A reconstructable true track has one hit in each layer (no momentum or η requirement)
- The efficiency numerator is the number of reconstructed tracks which correspond to a MC particle

Oscar Augusto (UoM)

Efficiency and fake rate comparison for tracks with p> 20GeV and 2< η <5

Min. P	Acc	True e ⁻	SX	SY	Eff.	TrueReco/	Fake Rate	Fake
(GeV)	-	(%)	(mm)	(mm)	(%)	True	(%)	-
20	1	7.8	10	2	97.4	862/885	1.0	9
20	1	0.0	10	2	98.2	801/816	1.1	9
20	1	7.8	15	3	97.9	866/885	1.3	11
20	1	0.0	15	3	98.2	801/816	1.2	10
20	1	7.8	20	4	98.1	868/885	1.5	13
20	1	0.0	20	4	98.3	802/816	1.5	12
20	1	7.8	-	-	98.2	869/885	1.6	14
20	1	0.0	-	-	98.3	802/816	1.6	13

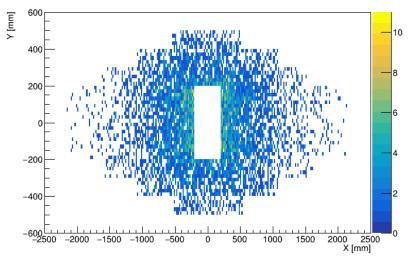
Table: Comparison for true tracks with momentum > 20 GeV and in the acceptance(eta) using samples with and without electrons

- $\bullet\,$ A reconstructable true track has one hit in each layer, p> 20GeV and 2< η <5
- The efficiency numerator is the number of reconstructed tracks which correspond to a MC particle

< □ > < 同 > < 回 > < 回 >

Summary

- This algorithm has 96.3% efficiency and 3.1% (with p> 5GeV and η requirements)
- Without p and η requirements, the performance is worse (80.0% efficiency and 12.3% fake rate)
- Those figures already represent an improvement with respect to the previous results
 - > 89% eff. 12.9% Fake Rate with tight requirements with p and η preselection
 - \blacktriangleright 93.9% eff. 15.7% Fake rate with looser requirements with p and η preselection
- Possible to further reduce the fake rate using $\sum_{i=1}^{5} |Y_i^{pred} Y_i|$ and $\sum_{i=1}^{5} |X_i^{pred} X_i|$ down to 1.6% with ~ 90% eff.
- Next steps:
 - Optimization of the search windows without η and momentum requirements
 - Performance removing one layer
 - More statistics
 - Aiming for an internal note early next year
 - Further ideas?


Thank you for your attention!

Backup slides

イロト イヨト イヨト イヨト

Hits on the 6th layer

X Y reco hits

(口)

Min. P	Acc	True e ⁻	SX	SY	Eff.	TrueReco/	Fake Rate	Fake
(GeV)	-	(%)	(mm)	(mm)	(%)	True	(%)	-
0	1	21.9	10	2	69.3	5190/7492	3.6	192
0	1	21.9	15	3	76.5	5729/7492	4.7	282
0	1	21.9	20	4	80.0	5993/7492	5.2	331
0	1	21.9	-	-	83.7	6269/7492	5.6	373
5	1	16.2	10	2	89.6	4560/5089	1.6	76
5	1	16.2	15	3	93.7	4767/5089	2.4	116
5	1	16.2	20	4	94.9	4832/5089	2.8	138
5	1	16.2	-	-	96.3	4902/5089	3.1	156
20	1	7.8	10	2	97.4	862/885	1.0	9
20	1	7.8	15	3	97.9	866/885	1.3	11
20	1	7.8	20	4	98.1	868/885	1.5	13
20	1	7.8	-	-	98.2	869/885	1.6	14

Table: PID with acceptance(eta) requirement.

・ロト ・四ト ・ヨト ・ヨト

Min. P	Acc	True e ⁻	SX	SY	Eff.	TrueReco/	Fake Rate	Fake
(GeV)	-	(%)	(mm)	(mm)	(%)	True	(%)	-
0	0	26.9	10	2	65.9	6122/9292	9.4	636
0	0	26.9	15	3	72.8	6765/9292	11.0	834
0	0	26.9	20	4	76.4	7098/9292	11.6	933
0	0	26.9	-	-	80.0	7430/9292	12.3	1039
5	0	21.3	10	2	88.0	5425/6162	2.2	124
5	0	21.3	15	3	92.3	5690/6162	3.3	193
5	0	21.3	20	4	94.0	5790/6162	3.8	230
5	0	21.3	-	-	95.4	5879/6162	4.4	268
20	0	15.0	10	2	95.3	951/998	0.9	9
20	0	15.0	15	3	96.1	959/998	1.1	11
20	0	15.0	20	4	96.7	965/998	1.3	13
20	0	15.0	-	-	97.1	969/998	1.4	14

Table: PID without acceptance(eta) requirement.

・ロト ・四ト ・ヨト ・ヨト

Min. P	Acc	True e ⁻	SX	SY	Eff.	TrueReco/	Fake Rate	Fake
(GeV)	-	(%)	(mm)	(mm)	(%)	True	(%)	-
0	1	0.0	10	2	76.6	4483/5852	2.5	116
0	1	0.0	15	3	83.1	4862/5852	3.3	165
0	1	0.0	20	4	86.2	5044/5852	3.8	197
0	1	0.0	-	-	89.2	5222/5852	3.9	212
5	1	0.0	10	2	93.0	3968/4266	1.7	68
5	1	0.0	15	3	95.9	4091/4266	2.4	102
5	1	0.0	20	4	96.7	4126/4266	2.8	119
5	1	0.0	-	-	97.5	4159/4266	3.1	131
20	1	0.0	10	2	98.2	801/816	1.1	9
20	1	0.0	15	3	98.2	801/816	1.2	10
20	1	0.0	20	4	98.3	802/816	1.5	12
20	1	0.0	-	-	98.3	802/816	1.6	13

Table: NoElectrons with acceptance(eta) requirement.

イロト 不良 とくほとくほう

Min. P	Acc	True e ⁻	SX	SY	Eff.	TrueReco/	Fake Rate	Fake
(GeV)	-	(%)	(mm)	(mm)	(%)	True	(%)	-
0	0	0.0	10	2	74.8	5079/6788	4.4	236
0	0	0.0	15	3	80.7	5476/6788	5.5	320
0	0	0.0	20	4	83.6	5676/6788	6.0	365
0	0	0.0	-	-	86.5	5871/6788	6.3	395
5	0	0.0	10	2	93.5	4536/4852	2.0	93
5	0	0.0	15	3	96.1	4663/4852	3.0	143
5	0	0.0	20	4	96.9	4701/4852	3.4	165
5	0	0.0	-	-	97.6	4736/4852	3.7	182
20	0	0.0	10	2	98.1	832/848	1.1	9
20	0	0.0	15	3	98.1	832/848	1.2	10
20	0	0.0	20	4	98.2	833/848	1.4	12
20	0	0.0	-	-	98.2	833/848	1.5	13

Table: NoElectrons without acceptance(eta) requirement.

イロト 不良 とくほとくほう