Pre-review of mechanical designs for the MPPC-PCB & LGP module toward mass production

7 December 2020

Tsunayuki Matsubara (KEK)

Production schedule (ver. Oct. 2020)

			2	2020							20	21									2	022	2			
Hardwares	Start	End	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9
Box design + prototyping	-	Nov. 2021																								
Box production (first 3 plates)	Dec. 2020	May 2021																								
Box production (another 3 plates)	May 2021	July 2021																								
Cube production + layer assembly	-	Jan. 2021																								
Platform design	July 2020	Feb. 2021																								
Platform production	Mar. 2021	May 2021																								
Fiber assembly + QC/QA	Dec. 2020	Mar. 2021				Г																				
MPPC board assembly	Dec. 2020	Mar. 2021																								
MPPC board QC/QA	Apr. 2021	June 2021									-															
Calib. system assembly	Dec. 2020	Mar. 2021																								
Calib. system QC/QA	Apr. 2021	June 2021									-															
FEE prototype design	-	Feb. 2021																								
Systematic test	Mar. 2021	May 2021																								
FEE final design	June 2021	Sep. 2021																								
FEE production + QC/QA	Oct. 2021	Feb. 2022																								
OCB/Backplane prototype design	-	Feb. 2021																								
Systematic test	Mar. 2021	June 2021																								
OCB/Backplane final design	June 2021	Sep. 2021																								
OCB/Backplane production (+ QC/QA?)	Oct. 2021	Nov. 2021																								
						÷.,																				
Works	Start	End	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9
Integration - Cube+Box (CERN)	June 2021	Aug. 2021																								
Integration - Fiber (J-PARC)	Oct. 2021	Dec. 2021																								
Integration - MPPC (J-PARC)	Jan. 2022	Feb. 2022																								
Integration - Calib. system (J-PARC)	Jan. 2022	Feb. 2022																								
Integration - Electronics (on surface)	Mar. 2022	Mar. 2022																								
Integration - Commissioning (on surface)	April 2022	April 2022																								
Installation of SFGD	May 2022	May 2022																								
Commissioning (in the basket)	May 2022	June 2022				_																				

- Due to our budget restriction, we need to start mass production from 15 Jan.
- Can we ensure no change of the mechanical design by the time?
- Small internal review has to be done for that in a month.
- Here I tried to check a list to be reviewed.

Summary of MPPC64-PCB design

- Points of mechanical design
 - 1) Outer dimension (Clearance between boards) ··· OK
 - 2) MPPC pitch & orientation (90 degree rotation states) ···· OK
 - 3) Interference with the LGP module \cdots OK
 - 4) <u>Alignment pin & screws</u> ··· NOT YET DESIGNED
 - 5) Others … Not identified. Any feedback?
- Other points (somehow related to the box design)
 - Cable holding
 - Light tightness

(NOTE: Review of electronic design is ongoing by LSU)

1) Outer dimension

- There is clearance between vertical boards with current design
- We plan to require negative tolerance for the outer dimension

2) MPPC pitch & orientation

3) Interference with the LGP module

- Larry pointed interference between MPPC-PCB and LGP module for the side wall of the box.
- We agreed to reduce the thickness of the container for the wall LGP module from 2 mm to 1 mm
- This is only for 2 modules located at the boundary of right/left plates. No issue (e.g. strength and manufacturing) is expected for the wall module by reducing the thickness with -1 mm.
- It allows us to enlarge the thickness of the G10 grid wall to screw MPPC-PCB.
 I proposed 0.65 mm (next page).
- We can then keep the enough clearance to mount the narrower LGP module.

 • 2.45+0.65 mm would be a reasonable choice for the G10 grid thickness?

 1mm clearance is then kept between the G10 wall to the LGP module

4) Alignment pin & screws

We need to know the final design as soon as possible

Summary of LGP module design

- Points of mechanical design
 - 1) Outer dimension ···· OK
 - 2) Pitch size for the notches & box holes ... OK
 - 3) Cabling ... OK
 - 4) Screw and screw holes ···· OK
 - 5) Others … Not identified. Any feedback?
- Other points (somehow related to the box design)
 - Cable holding
 - Light tightness

(NOTE: Evaluation of optical specification is ongoing by TMU)

1) Outer dimension (Interference b/w modules and bracket)

- 2 mm clearance between modules
- No interference with bracket (and other parts for sure)
- Space of ~5 mm at the corner looks safe for routing of cable from LED-PCB in the module. (3 mm is enough at maximum)
 - We would have to attache the cable first before mounting the module but it looks feasible.

2) Pitch size for the notches & box holes

 As we agreed in the meeting on Wednesday, vertical pitch of the box hole will be made with 10.28 mm equal pitch, unlike MPPC-PCB.
Minimal misalignment is expected between the cube and box hole.

3) Cabling

No problem is found in the space for cable routing

12

12

Two bundled cables (next page) to each corner

to equalize the cable amount

12

12

Choice of connector/cable type

	Cabla			C	able Specificati	ion			
Description	Туре	Inner Conductor*	Dielectric	Outer	Jacket	Flame Retardant	Nominal a	At 6GHz	
Dia.0.81mm Coaxial Cable	04	7/0.05 SA (AWG#36)	Dia.0.4mm FEP	Single Shield TA	Dia.0.81mm FEP	Glade	5.4dB/m	8.0dB/m	Halogen-free is not available
Dia.1.13mm Coaxial Cable	068	7/0.08 SA (AWG#32)	Dia.0.68mm FEP	Single Shield TA	Dia.1.13mm FEP		3.73dB/m	5.44dB/m	Halogen-free is available
1				5 Max)	<u></u>	40HF	1.13	mm we b	ought for check
H		H		2.4 (2.5 Max)		40HF Dia 0.81	1.13	mm we b	ought for check

1.13 mmΦ (or 0.81 mmΦ)

We only need a cross-section of "8 mm x 3 mm" for cable routing around the detector

4) screws and screw holes

Drawing of the wall module

Drawing of the bottom module

Conclusion

- Small internal review is expected before the mass production.
- Preliminary investigation for the reviewing is performed.
- Feedbacks are welcome.
- \cdot We plan to summarize those information in an official document.

Backup

Private check of envelope

Understandings of envelope along beam axis

Risk analysis

Uncertainties what Davide and I privately discussed are:

- · 1 mm flatness (any detector given the large surface)
- \cdot 1-2mm precision in the measurement we did in ND280
- Earthquake deformation (~4mm from ToF and ~3mm from sFGD)
- Other potential issues we may be missing (misaligned detectors, not perfect installation in ND280 after the upgrade, etc.)

Sum of those uncertainties is ~7 mm (except for potential issues)

- → So it can be accommodated by the current TOF-SFGD clearances (10 (8) mm clearance for upstream (downstream)).
- → But if we still have concern in other potential issues for the available envelope as mentioned above, having more clearance is safer.