

EFT interpretation of LHC data using Fitmaker

Tevong You

Based on 2012.02779 J. Ellis, M. Madigan, K. Mimasu, V. Sanz, TY

Introduction

- SMEFT
- Measurements
- Fitmaker
- Results
- Conclusion

SM to **SMEFT** framework

- New physics appear to be decoupled at higher energies
- Given particle content, write down all terms allowed by symmetries...

	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$
Q_L	3	2	$\frac{1}{6}$
$egin{array}{c} Q_L \ q_R^u \end{array}$	3	1	$\frac{2}{3}$
q_R^d	3	1	$-\frac{1}{3}$
L_L	1	2	$-\frac{1}{2}$
l_R	1	1	-1
ϕ	1	2	$\frac{1}{2}$

$$\mathcal{L}_{SM} = \mathcal{L}_m + \mathcal{L}_g + \mathcal{L}_h + \mathcal{L}_y \qquad ,$$

$$\mathcal{L}_m = \bar{Q}_L i \gamma^\mu D^L_\mu Q_L + \bar{q}_R i \gamma^\mu D^R_\mu q_R + \bar{L}_L i \gamma^\mu D^L_\mu L_L + \bar{l}_R i \gamma^\mu D^R_\mu l_R$$

$$\mathcal{L}_G = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^a_{\mu\nu} W^{a\mu\nu}$$

$$\mathcal{L}_H = (D^L_\mu \phi)^\dagger (D^{L\mu} \phi) - V(\phi)$$

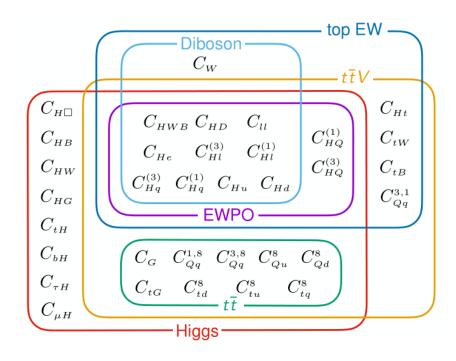
$$\mathcal{L}_Y = y_d \bar{Q}_L \phi q^d_R + y_u \bar{Q}_L \phi^c q^u_R + y_L \bar{L}_L \phi l_R + \text{h.c.} \qquad ,$$

...Including higher-dimensional operators!

$$\mathcal{L}_{ ext{SM}}^{ ext{dim-6}} = \sum_i rac{c_i}{\Lambda^2} \mathcal{O}_i$$

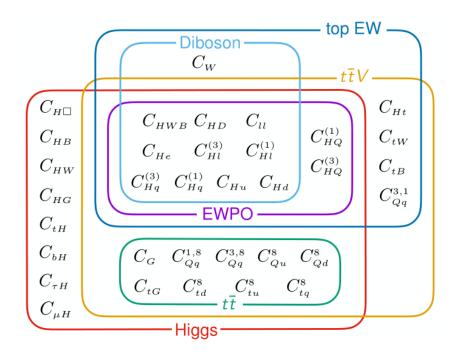
• Generated by new physics at scale $\Lambda \gg v$

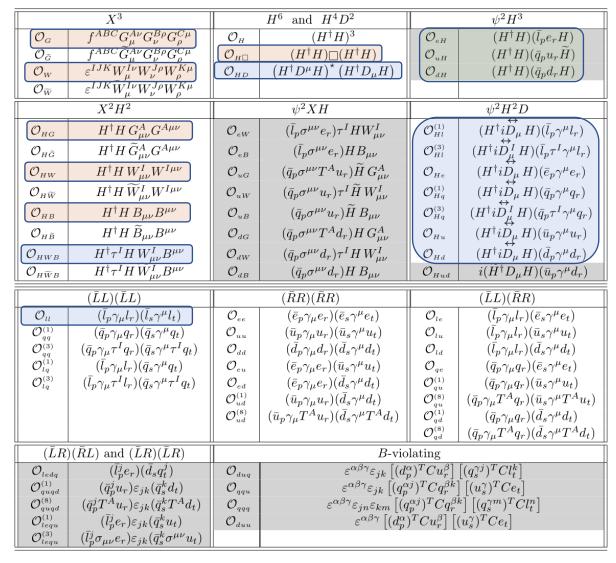
• Lagrangian dim-6 operator coefficient normalization: $\mathcal{L}_{\mathrm{SMEFT}} = \mathcal{L}_{\mathrm{SM}} + \sum_{i=1}^{2499} \frac{C_i}{\Lambda^2} \mathcal{O}_i$

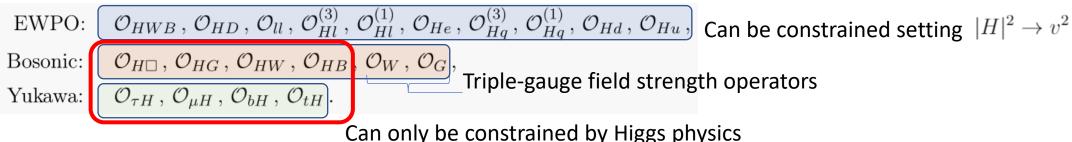

Warsaw basis

[1008.4884 Grzadkowski et al]

	X^3		H^6 and H^4D^2	$\psi^2 H^3$	
$\mathcal{O}_{\scriptscriptstyle G}$	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$\mathcal{O}_{\scriptscriptstyle H}$	$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^\dagger H)(ar{l}_p e_r H)$
$\mathcal{O}_{ ilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	\mathcal{O}_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}H)$
\mathcal{O}_{W}	$\varepsilon^{IJK}W_{\mu}^{\dot{I} u}W_{ u}^{J ho}W_{ ho}^{\dot{K}\mu}$	$\mathcal{O}_{\scriptscriptstyle HD}$	$\left(H^\dagger D^\mu H ight)^\star \left(H^\dagger D_\mu H ight)$	\mathcal{O}_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$
$\mathcal{O}_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}$				
	X^2H^2		$\psi^2 X H$		$\psi^2 H^2 D$
\mathcal{O}_{HG}	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	\mathcal{O}_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$\mathcal{O}_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	\mathcal{O}_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	$\mathcal{O}_{Hl}^{(3)}$	$H^{\dagger}i\overrightarrow{D}_{\!$
$\mathcal{O}_{\scriptscriptstyle HW}$	$H^\dagger H W^I_{\mu u} W^{I \mu u}$	\mathcal{O}_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	\mathcal{O}_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$\mathcal{O}_{H\widetilde{W}}$	$H^\dagger H \widetilde{W}^I_{\mu u} W^{I \mu u}$	\mathcal{O}_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i\tilde{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$\mathcal{O}_{{\scriptscriptstyle H}{\scriptscriptstyle B}}$	$H^\dagger H B_{\mu u} B^{\mu u}$	\mathcal{O}_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	$\mathcal{O}_{Hq}^{(3)}$	$(H^{\dagger}i\overrightarrow{D}_{\underline{\mu}}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$\mathcal{O}_{H\widetilde{B}}$	$H^\dagger H \widetilde{B}_{\mu u} B^{\mu u}$	${\cal O}_{dG}$	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	$\mathcal{O}_{_{Hu}}$	$(H^{\dagger}i\stackrel{\smile}{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$
O_{HWB}	$H^\dagger au^I H W^I_{\mu u} B^{\mu u}$	\mathcal{O}_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	\mathcal{O}_{Hd}	$(H^{\dagger}iD_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$\mathcal{O}_{H\widetilde{W}B}$	$H^\dagger au^I H \widetilde{W}^I_{\mu u} B^{\mu u}$	\mathcal{O}_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	$\mathcal{O}_{{\scriptscriptstyle Hud}}$	$i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$
- HWB	μν		(1)		. , , , , , ,
- HWB			$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$
\mathcal{O}_{ll}	$\frac{(\bar{L}L)(\bar{L}L)}{(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)}$	\mathcal{O}_{ee}	$(\bar{R}R)(\bar{R}R)$	\mathcal{O}_{le}	$\frac{(\bar{L}L)(\bar{R}R)}{(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)}$
	$\frac{(\bar{L}L)(\bar{L}L)}{(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)}$		$ \begin{array}{c c} (\bar{R}R)(\bar{R}R) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \end{array} $		$ \begin{array}{c c} (\bar{L}L)(\bar{R}R) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t) \end{array} $
\mathcal{O}_{ll} $\mathcal{O}_{qq}^{(1)}$ $\mathcal{O}_{qq}^{(3)}$	$ \frac{(\bar{L}L)(\bar{L}L)}{(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)} \\ (\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t) $	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd}	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{u}_p\gamma_\mu u_r)(\bar{u}_s\gamma^\mu u_t)$ $(\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t)$	\mathcal{O}_{le}	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)$
\mathcal{O}_{ll} $\mathcal{O}_{qq}^{(1)}$ $\mathcal{O}_{qq}^{(3)}$ $\mathcal{O}_{lq}^{(1)}$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$	$egin{array}{c} \mathcal{O}_{ee} \ \mathcal{O}_{uu} \ \mathcal{O}_{dd} \ \mathcal{O}_{eu} \end{array}$	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$	$egin{array}{c} \mathcal{O}_{le} \ \mathcal{O}_{lu} \ \mathcal{O}_{ld} \ \mathcal{O}_{qe} \end{array}$	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)$
\mathcal{O}_{ll} $\mathcal{O}_{qq}^{(1)}$ $\mathcal{O}_{qq}^{(3)}$	$ \frac{(\bar{L}L)(\bar{L}L)}{(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)} \\ (\bar{q}_p\gamma_\mu q_r)(\bar{q}_s\gamma^\mu q_t) \\ (\bar{q}_p\gamma_\mu \tau^I q_r)(\bar{q}_s\gamma^\mu \tau^I q_t) $	$egin{array}{c} \mathcal{O}_{ee} \ \mathcal{O}_{uu} \ \mathcal{O}_{dd} \ \mathcal{O}_{eu} \ \mathcal{O}_{ed} \ \end{array}$	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$	$egin{array}{c} \mathcal{O}_{le} \ \mathcal{O}_{lu} \ \mathcal{O}_{ld} \ \mathcal{O}_{qe} \ \mathcal{O}_{qu}^{(1)} \end{array}$	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t)$
\mathcal{O}_{ll} $\mathcal{O}_{qq}^{(1)}$ $\mathcal{O}_{qq}^{(3)}$ $\mathcal{O}_{lq}^{(1)}$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$	$egin{array}{c} \mathcal{O}_{ee} & & & \\ \mathcal{O}_{uu} & & & \\ \mathcal{O}_{dd} & & & \\ \mathcal{O}_{eu} & & & \\ \mathcal{O}_{ed} & & & \\ \mathcal{O}_{ud}^{(1)} & & \\ \end{array}$	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$	$egin{array}{c} \mathcal{O}_{le} \ \mathcal{O}_{lu} \ \mathcal{O}_{ld} \ \mathcal{O}_{qe} \ \mathcal{O}_{qu}^{(1)} \ \mathcal{O}_{qu}^{(8)} \ \mathcal{O}_{qu}^{(8)} \end{array}$	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t)$ $(\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t)$
\mathcal{O}_{ll} $\mathcal{O}_{qq}^{(1)}$ $\mathcal{O}_{qq}^{(3)}$ $\mathcal{O}_{lq}^{(1)}$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$	$egin{array}{c} \mathcal{O}_{ee} \ \mathcal{O}_{uu} \ \mathcal{O}_{dd} \ \mathcal{O}_{eu} \ \mathcal{O}_{ed} \ \end{array}$	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$	$egin{array}{c} \mathcal{O}_{le} \ \mathcal{O}_{lu} \ \mathcal{O}_{ld} \ \mathcal{O}_{qe} \ \mathcal{O}_{qu}^{(1)} \ \mathcal{O}_{qd}^{(8)} \ \mathcal{O}_{qd}^{(1)} \end{array}$	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t)$ $(\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{d}_s\gamma^\mu d_t)$
\mathcal{O}_{ll} $\mathcal{O}_{qq}^{(1)}$ $\mathcal{O}_{qq}^{(3)}$ $\mathcal{O}_{lq}^{(1)}$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$	$egin{array}{c} \mathcal{O}_{ee} & & & \\ \mathcal{O}_{uu} & & & \\ \mathcal{O}_{dd} & & & \\ \mathcal{O}_{eu} & & & \\ \mathcal{O}_{ed} & & & \\ \mathcal{O}_{ud}^{(1)} & & \\ \end{array}$	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$	$egin{array}{c} \mathcal{O}_{le} \ \mathcal{O}_{lu} \ \mathcal{O}_{ld} \ \mathcal{O}_{qe} \ \mathcal{O}_{qu}^{(1)} \ \mathcal{O}_{qu}^{(8)} \ \mathcal{O}_{qu}^{(8)} \end{array}$	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t)$
$\begin{array}{c c} \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \end{array}$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$	$egin{array}{c} \mathcal{O}_{ee} & & & \\ \mathcal{O}_{uu} & & & \\ \mathcal{O}_{dd} & & & \\ \mathcal{O}_{eu} & & & \\ \mathcal{O}_{ed} & & & \\ \mathcal{O}_{ud}^{(1)} & & \\ \end{array}$	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $B-vio$	$egin{array}{c} \mathcal{O}_{le} & & & & & \\ \mathcal{O}_{lu} & \mathcal{O}_{ld} & & & & \\ \mathcal{O}_{qe} & \mathcal{O}_{qu}^{(1)} & & & & \\ \mathcal{O}_{qu}^{(8)} & \mathcal{O}_{qd}^{(8)} & & & & \\ \mathcal{O}_{qd}^{(8)} & & & & \\ \mathcal{O}_{qd}^{(8)} & & & & \\ \end{array}$	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t)$ $(\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t)$ $(\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t)$ $(\bar{q}_p\gamma_\mu q_r)(\bar{d}_s\gamma^\mu d_t)$ $(\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu d_t)$ $(\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu T^A d_t)$
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$	$egin{array}{c} \mathcal{O}_{ee} & & & \\ \mathcal{O}_{uu} & & & \\ \mathcal{O}_{dd} & & & \\ \mathcal{O}_{eu} & & & \\ \mathcal{O}_{ed} & & & \\ \mathcal{O}_{ud}^{(1)} & & \\ \end{array}$	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $B\text{-vio}$ $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(d_{s}^{\prime})^{\mu} (d_{s}^{$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$
$\begin{array}{c c} & \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{array}$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{q}_{p}l_{r})(\bar{q}_{s}l_{r})$ $(\bar{q}_{p}l_{r})(\bar{q}_{s}l_{r})$ $(\bar{q}_{p}l_{r})\varepsilon_{jk}(\bar{q}_{s}l_{r})$	$egin{array}{c} \mathcal{O}_{ee} & \mathcal{O}_{uu} & \mathcal{O}_{dd} & \mathcal{O}_{eu} & \mathcal{O}_{ed} & \mathcal{O}_{ud} & $	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $B\text{-vio}$ $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk})\right](q_{p}^{\alpha})$	$egin{array}{ c c c c c } \mathcal{O}_{le} & \mathcal{O}_{lu} & \mathcal{O}_{ld} & \mathcal{O}_{ld} & \mathcal{O}_{qe} & \mathcal{O}_{qu}^{(1)} & \mathcal{O}_{qd}^{(8)} & \mathcal{O}_{qd}^{(8)$	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $[(q_{s}^{\gamma})^{T}Cl_{t}^{k}]$ $[(u_{s}^{\gamma})^{T}Ce_{t}]$
$ \begin{array}{c c} & \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} & \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} & \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} & \mathcal{O}_{lq}^{(4)} \\ \end{array} $	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{q}_{p}^{j}e_{r})(\bar{d}_{s}q_{s}^{j})$ $(\bar{q}_{p}^{j}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}d_{t})$ $(\bar{q}_{p}^{j}T^{A}u_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}T^{A}d_{t})$	$egin{array}{c} \mathcal{O}_{ee} & \mathcal{O}_{uu} & \mathcal{O}_{dd} & \mathcal{O}_{eu} & \mathcal{O}_{ed} & \mathcal{O}_{ud} & $	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $\mathcal{B}\text{-vio}$ $\mathcal{E}^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk})\right]$ $\mathcal{E}^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{jk}\left[(d_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk})\right]$	$egin{array}{ c c c c } & \mathcal{O}_{le} & & & & & & & & & & & & & & & & & & &$	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $[(q_{s}^{\gamma j})^{T}Cl_{t}^{k}]$ $[(u_{s}^{\gamma})^{T}Ce_{t}]$ $[(u_{s}^{\gamma})^{T}Ce_{t}]$
$\begin{array}{c c} & \mathcal{O}_{ll} \\ \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{array}$	$(\bar{L}L)(\bar{L}L)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{q}_{p}l_{r})(\bar{q}_{s}l_{r})$ $(\bar{q}_{p}l_{r})(\bar{q}_{s}l_{r})$ $(\bar{q}_{p}l_{r})\varepsilon_{jk}(\bar{q}_{s}l_{r})$	\mathcal{O}_{ee} \mathcal{O}_{uu} \mathcal{O}_{dd} \mathcal{O}_{eu} \mathcal{O}_{ed} $\mathcal{O}_{ud}^{(1)}$ $\mathcal{O}_{ud}^{(8)}$ $\mathcal{O}_{ud}^{(8)}$	$(\bar{R}R)(\bar{R}R)$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $B\text{-vio}$ $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} \left[(d_{s}^{\prime})^{\mu} (d_{s}^{$	$egin{array}{ c c c c } & \mathcal{O}_{le} & & & & & & & & & & & & & & & & & & &$	$(\bar{L}L)(\bar{R}R)$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $[(q_{s}^{\gamma j})^{T}Cl_{t}^{k}]$ $[(u_{s}^{\gamma})^{T}Ce_{t}]$ $[(u_{s}^{\gamma})^{T}Ce_{t}]$

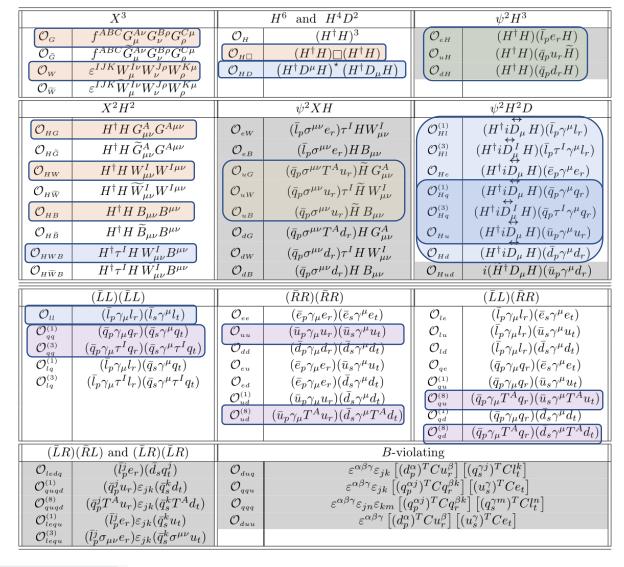

Input scheme:

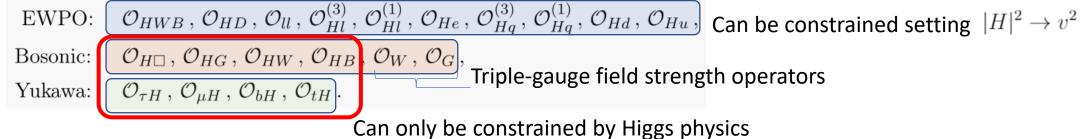

 $\alpha_{EW}^{-1} = 127.95, \quad G_F = 1.16638 \times 10^{-5} \,\text{GeV}^{-2},$ $m_Z = 91.1876 \,\text{GeV}, \quad m_H = 125.09 \,\text{GeV}, \quad m_t = 173.2 \,\text{GeV}$



	X^3		H^6 and H^4D^2		$\psi^2 H^3$
\mathcal{O}_G	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	\mathcal{O}_H	$(H^{\dagger}H)^3$	O_{eH}	$(H^\dagger H)(ar{l}_p e_r H)$
$\mathcal{O}_{ ilde{G}}$	$f^{ABC}\widetilde{G}_{\mu}^{A\nu}G_{\nu}^{B\rho}G_{\rho}^{C\mu}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	\mathcal{O}_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$
\mathcal{O}_W	$\varepsilon^{IJK}W_{\mu}^{I u}W_{ u}^{J ho}W_{ ho}^{K\mu}$	$\mathcal{O}_{\scriptscriptstyle HD}$	$\left(H^\dagger D^\mu H\right)^\star \left(H^\dagger D_\mu H\right)$	\mathcal{O}_{dH}	$(H^\dagger H)(ar q_p d_r H)$
$\mathcal{O}_{\widetilde{W}}$	$\varepsilon^{IJK} \widehat{W}_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu}$				
	X^2H^2		$\psi^2 X H$		$\psi^2 H^2 D$
$\mathcal{O}_{\scriptscriptstyle HG}$	$H^{\dagger}HG^{A}_{\mu u}G^{A\mu u}$	${\cal O}_{eW}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}i\overset{\smile}{D}_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$\mathcal{O}_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	\mathcal{O}_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	$\mathcal{O}_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$\mathcal{O}_{\scriptscriptstyle HW}$	$H^\dagger H W^I_{\mu u} W^{I\mu u}$	\mathcal{O}_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	\mathcal{O}_{He}	$(H^{\dagger}i\overrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$\mathcal{O}_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}_{\mu\nu}^{I}W^{I\mu\nu}$	\mathcal{O}_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{H} W^I_{\mu\nu}$	$\mathcal{O}_{Hq}^{(1)}$	$(H^{\dagger}i\overset{\smile}{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$\mathcal{O}_{\scriptscriptstyle HB}$	$H^\dagger H B_{\mu u} B^{\mu u}$	\mathcal{O}_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	$\mathcal{O}_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\underline{\mu}}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$\mathcal{O}_{H\widetilde{B}}$	$H^\dagger H \widetilde{B}_{\mu u} B^{\mu u}$	\mathcal{O}_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	\mathcal{O}_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$\mathcal{O}_{\scriptscriptstyle HWB}$	$H^{\dagger} au^I H W^I_{\mu u} B^{\mu u}$	${\cal O}_{dW}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	\mathcal{O}_{Hd}	$(H^{\dagger}i\overset{\overleftrightarrow{D}}{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$\mathcal{O}_{H\widetilde{W}B}$	$H^{\dagger} \tau^I H W^I_{\mu\nu} B^{\mu\nu}$	\mathcal{O}_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	$\mathcal{O}_{{\scriptscriptstyle Hud}}$	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$
	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$
\mathcal{O}_{ll}		\mathcal{O}_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	\mathcal{O}_{le}	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$
\mathcal{O}_{ll} $\mathcal{O}_{qq}^{(1)}$	$ \begin{array}{c} (\bar{L}L)(\bar{L}L) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t) \end{array} $	\mathcal{O}_{uu}	$ \begin{array}{c} (\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \end{array} $	\mathcal{O}_{le} \mathcal{O}_{lu}	$ \frac{(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)}{(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)} $
$\mathcal{O}_{qq}^{(1)}$ $\mathcal{O}_{qq}^{(3)}$	$ \begin{array}{c} (\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t) \\ (\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) \end{array} $	${\cal O}_{uu} \ {\cal O}_{dd}$	$\begin{array}{c} (\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t) \end{array}$	\mathcal{O}_{lu} \mathcal{O}_{ld}	$\begin{array}{c} (\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t) \end{array}$
$\mathcal{O}_{qq}^{(1)} \ \mathcal{O}_{qq}^{(3)} \ \mathcal{O}_{lq}^{(1)}$	$ \frac{(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)}{(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)} (\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) (\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t) $	$egin{array}{c} {\cal O}_{uu} \ {\cal O}_{dd} \ {\cal O}_{eu} \end{array}$	$\begin{array}{c} (\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t) \\ (\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t) \\ (\bar{d}_p \gamma_\mu d_r)(\bar{d}_s \gamma^\mu d_t) \\ (\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t) \end{array}$	$egin{array}{c} \mathcal{O}_{lu} \ \mathcal{O}_{ld} \ \mathcal{O}_{qe} \end{array}$	$ \frac{(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)}{(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)} $
$\mathcal{O}_{qq}^{(1)}$ $\mathcal{O}_{qq}^{(3)}$	$ \begin{array}{c} (\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t) \\ (\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t) \\ (\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) \end{array} $	$egin{array}{c} \mathcal{O}_{uu} \ \mathcal{O}_{dd} \ \mathcal{O}_{eu} \ \mathcal{O}_{ed} \end{array}$	$\begin{array}{c} (\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t) \\ (\bar{u}_p\gamma_\mu u_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t) \\ (\bar{e}_p\gamma_\mu e_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{e}_p\gamma_\mu e_r)(\bar{d}_s\gamma^\mu d_t) \end{array}$	\mathcal{O}_{lu} \mathcal{O}_{ld} \mathcal{O}_{qe} $\mathcal{O}_{qu}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$ $(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$ $(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
$\mathcal{O}_{qq}^{(1)}$ $\mathcal{O}_{qq}^{(3)}$ $\mathcal{O}_{lq}^{(1)}$	$ \frac{(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)}{(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)} (\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) (\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t) $	$egin{array}{c} \mathcal{O}_{uu} \ \mathcal{O}_{dd} \ \mathcal{O}_{eu} \ \mathcal{O}_{ed} \ \mathcal{O}_{ed} \ \mathcal{O}_{ud} \end{array}$	$\begin{array}{c} (\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t) \\ (\bar{u}_p\gamma_\mu u_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t) \\ (\bar{e}_p\gamma_\mu e_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{e}_p\gamma_\mu e_r)(\bar{d}_s\gamma^\mu d_t) \\ (\bar{u}_p\gamma_\mu u_r)(\bar{d}_s\gamma^\mu d_t) \end{array}$	$\begin{array}{c} \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qu}^{(8)} \end{array}$	$\begin{array}{c} (\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t) \end{array}$
$\mathcal{O}_{qq}^{(1)}$ $\mathcal{O}_{qq}^{(3)}$ $\mathcal{O}_{lq}^{(1)}$	$ \frac{(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)}{(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)} (\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) (\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t) $	$egin{array}{c} \mathcal{O}_{uu} \ \mathcal{O}_{dd} \ \mathcal{O}_{eu} \ \mathcal{O}_{ed} \end{array}$	$\begin{array}{c} (\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t) \\ (\bar{u}_p\gamma_\mu u_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t) \\ (\bar{e}_p\gamma_\mu e_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{e}_p\gamma_\mu e_r)(\bar{d}_s\gamma^\mu d_t) \end{array}$	$\begin{array}{c} \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qu}^{(8)} \\ \mathcal{O}_{qd}^{(1)} \end{array}$	$\begin{array}{c} (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t}) \\ (\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t}) \end{array}$
$\mathcal{O}_{qq}^{(1)}$ $\mathcal{O}_{qq}^{(3)}$ $\mathcal{O}_{lq}^{(1)}$	$ \frac{(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)}{(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)} (\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) (\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t) $	$egin{array}{c} \mathcal{O}_{uu} \ \mathcal{O}_{dd} \ \mathcal{O}_{eu} \ \mathcal{O}_{ed} \ \mathcal{O}_{ed} \ \mathcal{O}_{ud} \end{array}$	$\begin{array}{c} (\bar{e}_p\gamma_\mu e_r)(\bar{e}_s\gamma^\mu e_t) \\ (\bar{u}_p\gamma_\mu u_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{d}_p\gamma_\mu d_r)(\bar{d}_s\gamma^\mu d_t) \\ (\bar{e}_p\gamma_\mu e_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{e}_p\gamma_\mu e_r)(\bar{d}_s\gamma^\mu d_t) \\ (\bar{u}_p\gamma_\mu u_r)(\bar{d}_s\gamma^\mu d_t) \end{array}$	$\begin{array}{c} \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qu}^{(8)} \end{array}$	$\begin{array}{c} (\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t) \end{array}$
$ \begin{array}{c c} \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \end{array} $	$ \frac{(\bar{l}_p \gamma_\mu l_r)(\bar{l}_s \gamma^\mu l_t)}{(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)} (\bar{q}_p \gamma_\mu \tau^I q_r)(\bar{q}_s \gamma^\mu \tau^I q_t) (\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t) $	$egin{array}{c} \mathcal{O}_{uu} \ \mathcal{O}_{dd} \ \mathcal{O}_{eu} \ \mathcal{O}_{ed} \ \mathcal{O}_{ed} \ \mathcal{O}_{ud} \end{array}$	$(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $B-vio$	$\begin{array}{c c} \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qu}^{(8)} \\ \mathcal{O}_{qd}^{(4)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \end{array}$	$\begin{array}{c} (\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{l}_p\gamma_\mu l_r)(\bar{d}_s\gamma^\mu d_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{e}_s\gamma^\mu e_t) \\ (\bar{q}_p\gamma_\mu q_r)(\bar{u}_s\gamma^\mu u_t) \\ (\bar{q}_p\gamma_\mu T^A q_r)(\bar{u}_s\gamma^\mu T^A u_t) \\ (\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu d_t) \\ (\bar{q}_p\gamma_\mu T^A q_r)(\bar{d}_s\gamma^\mu T^A d_t) \end{array}$
$\begin{array}{c} \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{array}$	$(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}\tau^{I}q_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $((\bar{R}L) \text{ and } (\bar{L}R)(\bar{L}R)$ $((\bar{l}_{p}^{j}e_{r})(\bar{l}_{s}q_{t}^{j})$	$egin{array}{c} \mathcal{O}_{uu} \ \mathcal{O}_{dd} \ \mathcal{O}_{eu} \ \mathcal{O}_{ed} \ \mathcal{O}_{ed} \ \mathcal{O}_{ud} \end{array}$	$(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $B\text{-vio}$ $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_{s}^{\prime})^{\mu}(d_{s}^{\prime})^$	$\begin{array}{c c} \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{ql}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \end{array}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{e}_s \gamma^\mu e_t)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$ $(\bar{l}_p \gamma_\mu l_r)(\bar{d}_s \gamma^\mu d_t)$ $(\bar{q}_p \gamma_\mu q_r)(\bar{e}_s \gamma^\mu e_t)$ $(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$ $(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$ $(\bar{q}_p \gamma_\mu q_r)(\bar{d}_s \gamma^\mu d_t)$ $(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu d_t)$ $(\bar{q}_p \gamma_\mu T^A q_r)(\bar{d}_s \gamma^\mu T^A d_t)$
$ \begin{array}{c c} \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{array} $	$\frac{(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})}{(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})}$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $((\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $((\bar{k}L) \text{ and } (\bar{L}R)(\bar{L}R)$ $((\bar{k}L) \text{ and } (\bar{k}R)(\bar{k}R)$ $((\bar{k}R) \text{ and } (\bar{k}R)(\bar{k}R)$ $((\bar{k}R) \text{ and } (\bar{k}R)(\bar{k}R)$	$egin{array}{c} \mathcal{O}_{uu} & \mathcal{O}_{dd} & \mathcal{O}_{eu} & \mathcal{O}_{ed} & \mathcal{O}_{ud}^{(1)} & \mathcal{O}_{ud}^{(8)} & \mathcal{O}_{ud}^{(8)} & \mathcal{O}_{duq}^{(9)} & \mathcal{O}_{qqu} & \mathcal{O}_{qqq} & \mathcal{O}_{qqu} & \mathcal{O}_{qqu} & \mathcal{O}_{qqu} & \mathcal{O}_{qqq} & \mathcal{O}_{qqqq} & \mathcal{O}_{qqq} & \mathcal{O}_{qqq} & \mathcal{O}_{qqq} & \mathcal{O}_{qqq} & \mathcal{O}_{qq$	$(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $\mathcal{B}\text{-vio}$ $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk})\right](q_{p}^{\alpha})$	$\begin{array}{c} \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \end{array}$	$(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $[(q_{s}^{\gamma})^{T}Cl_{t}^{k}]$ $[(u_{s}^{\gamma})^{T}Ce_{t}]$
$\begin{array}{c} \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{array}$	$\frac{(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})}{(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})}$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $((\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $((\bar{k}L) \text{ and } (\bar{L}R)(\bar{L}R)$ $((\bar{k}L) \text{ and } (\bar{k}R)(\bar{k}R)$ $((\bar{k}R) \text{ and } (\bar{k}R)(\bar{k}R)$ $((\bar{k}R) \text{ and } (\bar{k}R)(\bar{k}R)$	$egin{array}{c} \mathcal{O}_{uu} & \mathcal{O}_{dd} & \mathcal{O}_{eu} & \mathcal{O}_{ed} & \mathcal{O}_{ud}^{(1)} & \mathcal{O}_{ud}^{(8)} & \mathcal{O}_{ud}^{(8)} & \mathcal{O}_{duq}^{(9)} & \mathcal{O}_{qqu} & \mathcal{O}_{qqq} & \mathcal{O}_{qqu} & \mathcal{O}_{qqu} & \mathcal{O}_{qqu} & \mathcal{O}_{qqq} & \mathcal{O}_{qqqq} & \mathcal{O}_{qqq} & \mathcal{O}_{qqq} & \mathcal{O}_{qqq} & \mathcal{O}_{qqq} & \mathcal{O}_{qq$	$(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $\mathcal{B}\text{-vio}$ $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk})\right](q_{p}^{\alpha})$	$\begin{array}{c} \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(8)} \\ \end{array}$	$(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $[(q_{s}^{\gamma})^{T}Cl_{t}^{k}]$ $[(u_{s}^{\gamma})^{T}Ce_{t}]$
$ \begin{array}{c c} \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{array} $	$(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}q_{t})(\bar{l}_{s}q_{t})$ $(\bar{l}_{p}q_{t})(\bar{l}_{s}q_{t})$ $(\bar{l}_{p}q_{t})(\bar{l}_{s}q_{t})$ $(\bar{l}_{p}q_{t})(\bar{l}_{s}q_{t})$ $(\bar{l}_{p}q_{t})(\bar{l}_{s}q_{t})$ $(\bar{l}_{p}q_{t})(\bar{l}_{s}q_{t})$ $(\bar{l}_{p}q_{t})(\bar{l}_{s}q_{t})$	$egin{array}{c} \mathcal{O}_{uu} & & & & \\ \mathcal{O}_{dd} & & & & \\ \mathcal{O}_{eu} & & & & \\ \mathcal{O}_{ed} & & & & \\ \mathcal{O}_{ud}^{(1)} & & & \\ \mathcal{O}_{ud}^{(8)} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $	$(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $\mathcal{B}\text{-vio}$ $\mathcal{E}^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\right]\left[(q_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon$	$\begin{array}{c c} \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(9)} \end{array}$	$(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $[(q_{s}^{\gamma})^{T}Cl_{t}^{k}]$ $[(u_{s}^{\gamma})^{T}Ce_{t}]$ $[(q_{s}^{\gamma})^{T}Cl_{t}^{n}]$
$\begin{array}{c} \mathcal{O}_{qq}^{(1)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{qq}^{(3)} \\ \mathcal{O}_{lq}^{(1)} \\ \mathcal{O}_{lq}^{(3)} \\ \end{array}$	$\frac{(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})}{(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})}$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{q}_{s}\gamma^{\mu}q_{t})$ $(\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $((\bar{l}_{p}\gamma_{\mu}\tau^{I}l_{r})(\bar{q}_{s}\gamma^{\mu}\tau^{I}q_{t})$ $((\bar{k}L) \text{ and } (\bar{L}R)(\bar{L}R)$ $((\bar{k}L) \text{ and } (\bar{k}R)(\bar{k}R)$ $((\bar{k}R) \text{ and } (\bar{k}R)(\bar{k}R)$ $((\bar{k}R) \text{ and } (\bar{k}R)(\bar{k}R)$	$egin{array}{c} \mathcal{O}_{uu} & \mathcal{O}_{dd} & \mathcal{O}_{eu} & \mathcal{O}_{ed} & \mathcal{O}_{ud} & \mathcal{O}_{ud} & \mathcal{O}_{ud} & \mathcal{O}_{ud} & \mathcal{O}_{qqu} & \mathcal{O}_{qqq} & \mathcal{O}_{qq$	$(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{d}_{p}\gamma_{\mu}d_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{e}_{p}\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}u_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{u}_{p}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $\mathcal{B}\text{-vio}$ $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_{p}^{\alpha}\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk})\right](q_{p}^{\alpha})$	$\begin{array}{c c} \mathcal{O}_{lu} \\ \mathcal{O}_{ld} \\ \mathcal{O}_{qe} \\ \mathcal{O}_{qu}^{(1)} \\ \mathcal{O}_{qd}^{(8)} \\ \mathcal{O}_{qd}^{(9)} \end{array}$	$(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{l}_{p}\gamma_{\mu}l_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{u}_{s}\gamma^{\mu}T^{A}u_{t})$ $(\bar{q}_{p}\gamma_{\mu}q_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$ $(\bar{q}_{p}\gamma_{\mu}T^{A}q_{r})(\bar{d}_{s}\gamma^{\mu}T^{A}d_{t})$ $[(q_{s}^{\gamma})^{T}Cl_{t}^{k}]$ $[(u_{s}^{\gamma})^{T}Ce_{t}]$ $[(q_{s}^{\gamma})^{T}Cl_{t}^{n}]$

EWPO:
$$\mathcal{O}_{HWB}$$
, \mathcal{O}_{HD} , \mathcal{O}_{ll} , $\mathcal{O}_{Hl}^{(3)}$, $\mathcal{O}_{Hl}^{(1)}$, \mathcal{O}_{He} , $\mathcal{O}_{Hq}^{(3)}$, $\mathcal{O}_{Hq}^{(1)}$, \mathcal{O}_{Hd} , \mathcal{O}_{Hu} , Bosonic: $\mathcal{O}_{H\Box}$, \mathcal{O}_{HG} , \mathcal{O}_{HW} , \mathcal{O}_{HB} , \mathcal{O}_{W} , \mathcal{O}_{G} , Yukawa: $\mathcal{O}_{\tau H}$, $\mathcal{O}_{\mu H}$, \mathcal{O}_{bH} , \mathcal{O}_{tH} .


Top-specific flavour symmetry:

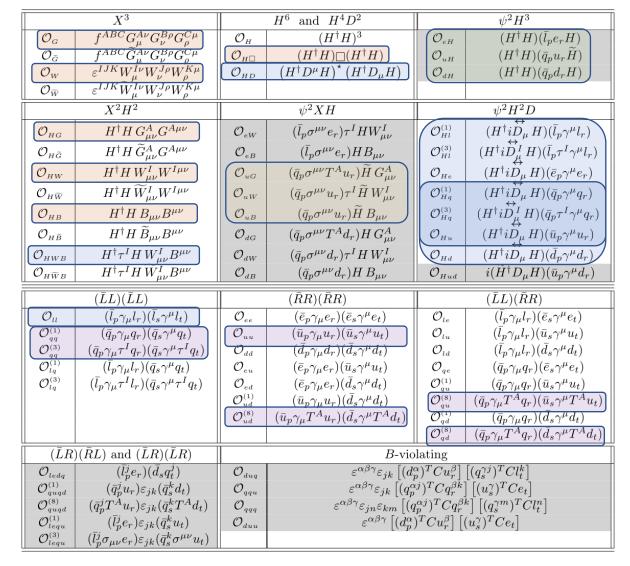

$$SU(3)^5 \to SU(2)^2 \times SU(3)^3$$

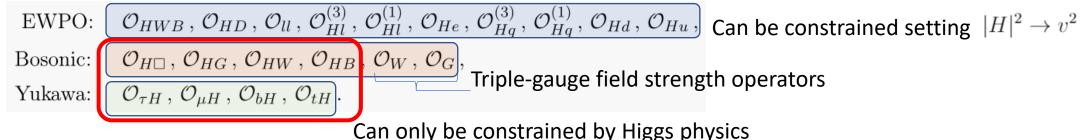
= $SU(2)_q \times SU(2)_u \times SU(3)_d \times SU(3)_l \times SU(3)_e$

• + 14 Top operators

See 1802.07237

Top 2F:
$$\mathcal{O}_{HQ}^{(3)}$$
, $\mathcal{O}_{HQ}^{(1)}$, \mathcal{O}_{Ht} , \mathcal{O}_{tG} , \mathcal{O}_{tW} , \mathcal{O}_{tB}
Top 4F: $\mathcal{O}_{Qq}^{3,1}$, $\mathcal{O}_{Qq}^{3,8}$, $\mathcal{O}_{Qq}^{1,8}$, \mathcal{O}_{Qu}^{8} , \mathcal{O}_{Qd}^{8} , \mathcal{O}_{tQ}^{8} , \mathcal{O}_{tu}^{8} , \mathcal{O}_{td}^{8}


Top-specific flavour symmetry:


$$SU(3)^5 \to SU(2)^2 \times SU(3)^3$$

$$= SU(2)_q \times SU(2)_u \times SU(3)_d \times SU(3)_l \times SU(3)_e$$
 Linear fit

• + 14 Top operators

See 1802.07237

Top 2F:
$$\mathcal{O}_{HQ}^{(3)}$$
, $\mathcal{O}_{HQ}^{(1)}$, \mathcal{O}_{Ht} , \mathcal{O}_{tG} , \mathcal{O}_{tW} , \mathcal{O}_{tB}
Top 4F: $\mathcal{O}_{Qq}^{3,1}$, $\mathcal{O}_{Qq}^{3,8}$, $\mathcal{O}_{Qq}^{1,8}$, \mathcal{O}_{Qu}^{8} , \mathcal{O}_{Qd}^{8} , \mathcal{O}_{tQ}^{8} , \mathcal{O}_{td}^{8} , \mathcal{O}_{td}^{8}

• Higgs, diboson, EWPO:

EW precision observables	$n_{\mathbf{obs}}$	Ref.
Precision electroweak measurements on the Z resonance.	12	[1]
$\Gamma_Z, \sigma_{\text{had.}}^0, R_{\ell}^0, A_{FB}^{\ell}, A_{\ell}(\text{SLD}), A_{\ell}(\text{Pt}), R_b^0, R_c^0, A_{FB}^b, A_{FB}^c, A_b \& A_c$		
Combination of CDF and D0 W-Boson Mass Measurements	1	[6]
LHC run 1 W boson mass measurement by ATLAS	1	[57]

Diboson LEP & LHC	$n_{\mathbf{obs}}$	Ref.
W^+W^- angular distribution measurements at LEP II.	8	[5]
W^+W^- total cross section measurements at L3 in the $\ell\nu\ell\nu$, $\ell\nu qq$ & $qqqq$	24	[3]
final states for 8 energies		
W^+W^- total cross section measurements at OPAL in the $\ell\nu\ell\nu$, $\ell\nu qq$ &	21	[4]
qqqq final states for 7 energies		
W^+W^- total cross section measurements at ALEPH in the $\ell\nu\ell\nu$, $\ell\nu qq$	21	[2]
& qqqq final states for 8 energies		
ATLAS W^+W^- differential cross section in the $e\nu\mu\nu$ channel, $\frac{d\sigma}{dp_{\perp}^T}$,	1	
$p_T > 120 \text{ GeV}$ overflow bin		[225]
ATLAS W^+W^- fiducial differential cross section in the $e\nu\mu\nu$ channel,	14	[58]
$\left[egin{array}{c} rac{d\sigma}{dp_{\ell_1}^T} \end{array} ight]$		
ATLAS Zjj fiducial differential cross section in the $\ell^+\ell^-$ channel, $\frac{d\sigma}{d\Delta\varphi_{jj}}$	12	[60]

LHC Run 1 Higgs	$n_{\mathbf{obs}}$	Ref.
ATLAS and CMS LHC Run 1 combination of Higgs signal strengths.	21	[8]
Production: ggF , VBF , ZH , WH & ttH		
Decay: $\gamma \gamma$, ZZ , W^+W^- , $\tau^+\tau^- \& b\bar{b}$		
ATLAS inclusive $Z\gamma$ signal strength measurement	1	[9]

LHC Run 2 Higgs (new)	$n_{\mathbf{obs}}$	Ref.
ATLAS combination of signal strengths and stage 1.0 STXS in $H \to 4\ell$	16 19 25	[10]
including ratios of branching fractions to $\gamma\gamma$, WW^* , $\tau^+\tau^-$ & $b\bar{b}$		
Signal strengths coarse STXS bins fine STXS bins		
CMS LHC combination of Higgs signal strengths.	23	[11]
Production: ggF , VBF , ZH , $WH \& ttH$		
Decay: $\gamma \gamma$, ZZ , $W^{+}W^{-}$, $\tau^{+}\tau^{-}$, $b\bar{b} \& \mu^{+}\mu^{-}$		
CMS stage 1.0 STXS measurements for $H \to \gamma \gamma$.	13 7	[12]
13 parameter fit 7 parameter fit		
CMS stage 1.0 STXS measurements for $H \to \tau^+ \tau^-$	9	[13]
CMS stage 1.1 STXS measurements for $H \to 4\ell$	19	[14]
CMS differential cross section measurements of inclusive Higgs produc-	5 6	[15]
tion in the $WW^* \to \ell\nu\ell\nu$ final state.		
$egin{array}{c c} d\sigma \ \hline dn_{ m jet} \end{array} igg rac{d\sigma}{dp_H^T}$		
ATLAS $H \to Z\gamma$ signal strength.	1	[16]
ATLAS $H \to \mu^+ \mu^-$ signal strength.	1	[17]

• Top:

Tevatron & Run 1 top	$n_{\mathbf{obs}}$	Ref.
Tevatron combination of differential $t\bar{t}$ forward-backward asymmetry,	4	[7]
$A_{FB}(m_{tar{t}}).$		
ATLAS $t\bar{t}$ differential distributions in the dilepton channel.	6	[18]
$rac{d\sigma}{dm_{tar{t}}}$		
ATLAS $t\bar{t}$ differential distributions in the ℓ +jets channel.	7 5 8 5	[19]
$rac{d\sigma}{dm_{tar{t}}} \left rac{d\sigma}{d y_{tar{t}} } \left rac{d\sigma}{dp_t^T} \left rac{d\sigma}{d y_t } ight .$		
CMS $t\bar{t}$ differential distributions in the ℓ +jets channel.	7 10 8 10	[20,
$\left rac{d\sigma}{dm_{tar{t}}} \;\; \left \;\; rac{d\sigma}{dy_{tar{t}}} \;\; \left \;\; rac{d\sigma}{dp_t^T} \;\; \left \;\; rac{d\sigma}{dy_t} ight .$		226]
CMS measurement of differential $t\bar{t}$ charge asymmetry, $A_C(m_{t\bar{t}})$ in the	3	
dilepton channel.		[227]
ATLAS inclusive measurement $t\bar{t}$ charge asymmetry, $A_C(m_{t\bar{t}})$ in the	1	
dilepton channel.		[228]
ATLAS & CMS combination of differential tt charge asymmetry,	6	[21]
$A_C(m_{tar{t}}), ext{ in the } \ell ext{+jets channel}.$		
CMS $t\bar{t}$ double differential distributions in the dilepton channel.	16 16	[22,
$\left rac{d\sigma}{dm_{tar{t}}dy_t} ight \left rac{d\sigma}{dm_{tar{t}}dy_{tar{t}}} ight \left rac{d\sigma}{dm_{tar{t}}dp_{tar{t}}^T} ight \left rac{d\sigma}{dy_tdp_t^T}.$	16 16	229]
ATLAS & CMS Run 1 combination of W-boson helicity fractions in top	3	[23]
decay. f_0 , $f_L \& f_R$		` ′
ATLAS measurement of W-boson helicity fractions in top decay.	3	[24]
$f_0,f_L\&f_R$		
CMS measurement of W-boson helicity fractions in top decay.	3	[25]
$f_0,f_L\&f_R$		
ATLAS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	2	[26]
CMS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	2	[27]
ATLAS t-channel single-top differential distributions.	4 4 4 5	[28]
$\left egin{array}{c c} rac{d\sigma}{dp_t^T} & rac{d\sigma}{dp_t^T} & rac{d\sigma}{d y_t } & rac{d\sigma}{d y_{ar{t}} } \end{array} ight $		
CMS s-channel single-top cross section measurement.	1	[29]
CMS t-channel single-top differential distributions.	6 6	[30]
$\left rac{d\sigma}{dp_{t+ar{t}}^T} ight \left rac{d\sigma}{d y_{t+ar{t}} } ight $		
$\stackrel{r_{t+t}}{\text{CMS}}$ measurement of the t-channel single-top and anti-top cross sections.	1 1 1 1	[31]
$ \sigma_t \sigma_{ar{t}} \sigma_{t+ar{t}} R_t.$		[[]
ATLAS s-channel single-top cross section measurement.	1	[32]
$\overline{\text{CMS }tW}$ cross section measurement.	1	[33]
ATLAS tW cross section measurement in the single lepton channel.	1	[34]
ATLAS tW cross section measurement in the dilepton channel.	1	[35]

Run 2 top	$n_{\mathbf{obs}}$	Ref.
CMS $t\bar{t}$ differential distributions in the dilepton channel.	6	[36,
$rac{d\sigma}{dm_{tar{t}}}$		230]
CMS $t\bar{t}$ differential distributions in the ℓ +jets channel.	10	[37]
$rac{d\sigma}{dm_{tar{t}}}$		
ATLAS measurement of differential $t\bar{t}$ charge asymmetry, $A_C(m_{t\bar{t}})$.	5	[38]
ATLAS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	2	[39]
CMS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	1 1	[40]
CMS $t\bar{t}Z$ differential distributions.	4 4	[41]
$rac{d\sigma}{dp_Z^T} \hspace{0.1cm} \left \hspace{0.1cm} rac{d\sigma}{d\cos heta^*} ight $		
CMS measurement of differential cross sections and charge ratios for t-	5 5	[42]
channel single-top quark production.		
$rac{d\sigma}{dp_{t+ar{t}}^T} ig R_t\left(p_{t+ar{t}}^T ight)$		
CMS measurement of t -channel single-top and anti-top cross sections.	4	[43]
$\sigma_t, \sigma_{\bar{t}}, \sigma_{t+\bar{t}} \& R_t.$		
CMS measurement of the t -channel single-top and anti-top cross sections.	1 1 1 1	[44]
$\sigma_t \mid \sigma_{\bar{t}} \mid \sigma_{t+\bar{t}} \mid R_t.$		
CMS t-channel single-top differential distributions.	4 4	[45]
$rac{d\sigma}{dp_{t+ar{t}}^T} \left rac{d\sigma}{d y_{t+ar{t}} } ight $		
ATLAS tW cross section measurement.	1	[46]
CMS tZ cross section measurement.	1	[47]
CMS tW cross section measurement.	1	[48]
ATLAS tZ cross section measurement.	1	[49]
CMS $tZ(Z \to \ell^+\ell^-)$ cross section measurement	1	[50]
ATLAS four-top search in the multi-lepton and same-sign dilepton chan-	1	[51]
nels.		
ATLAS four-top search in the single-lepton and opposite-sign dilepton	1	[52]
channels.		
CMS four-top search in the multi-lepton and same-sign dilepton chan-	1	[53]
nels.		
CMS four-top search in the single-lepton and opposite-sign dilepton	1	[54]
channels.		
CMS $t\bar{t}b\bar{b}$ cross section measurement in the all-jet channel.	1	[55]
CMS $t\bar{t}b\bar{b}$ cross section measurement in the dilepton channel.	1	[56]

• EWPO:

EW precision observables	$n_{\mathbf{obs}}$	Ref.
Precision electroweak measurements on the Z resonance.	12	[1]
$\Gamma_Z, \sigma_{\text{had.}}^0, R_\ell^0, A_{FB}^\ell, A_\ell(\text{SLD}), A_\ell(\text{Pt}), R_b^0, R_c^0 A_{FB}^b, A_{FB}^c, A_b \& A_c$		
Combination of CDF and D0 W-Boson Mass Measurements	1	[6]
LHC run 1 W boson mass measurement by ATLAS	1	[57]

Revised QCD uncertainties on A_{FB}^{b} not included: [2011.00530 d'Enterria & Yan]

$$T_{\xi}^{2} = T_{had}^{2} + 3T_{\xi}^{2} + R_{\xi}^{2} = \frac{T_{had}^{2}}{T_{\xi}^{2}} \qquad A_{fR}^{2} = \frac{3}{4} A_{e} A_{f} \qquad M_{w} = c_{w} M_{\xi}^{2}$$

$$R_{q} = \frac{T_{had}^{2}}{T_{had}^{2}}$$

$$T_{f}^{2} = \frac{J_{\xi}^{2} G_{F} M_{e}^{2} M_{\xi}}{G_{ff}^{2}} \left[(g_{L}^{f})^{2} + (g_{R}^{f})^{2} \right] \qquad A_{f}^{2} = \frac{(g_{L}^{f})^{2} - (g_{R}^{f})^{2}}{(g_{L}^{f})^{2} + (g_{R}^{f})^{2}}$$

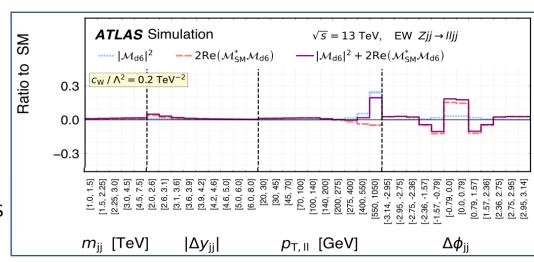
$$g^{f} = T_{f}^{2} - Q_{f} S_{w}^{2} \qquad S_{w}^{2} = \frac{1}{2} - \frac{1}{2} \sqrt{1 - \frac{4\pi}{52} G_{F} M_{\xi}^{2}}$$

9+ = T1 - Q65w

$$m_{\tilde{t}}^{L} = (m_{\tilde{t}}^{2})^{\circ} (1 + \Pi_{\tilde{t}\tilde{t}})$$
 $G_{\tilde{t}} = G_{\tilde{t}}^{\circ} (1 - \Pi_{uw}^{\circ}) \propto (m_{\tilde{t}}) = \alpha^{\circ}(m_{\tilde{t}}) (1 + \Pi_{\tilde{t}\tilde{t}})$

• Diboson:

Diboson LEP & LHC	$n_{\mathbf{obs}}$	Ref.
W^+W^- angular distribution measurements at LEP II.	8	[5]
W^+W^- total cross section measurements at L3 in the $\ell\nu\ell\nu$, $\ell\nu qq$ & $qqqq$	24	[3]
final states for 8 energies		
W^+W^- total cross section measurements at OPAL in the $\ell\nu\ell\nu$, $\ell\nu qq$ &	21	[4]
qqqq final states for 7 energies		
W^+W^- total cross section measurements at ALEPH in the $\ell\nu\ell\nu$, $\ell\nu qq$	21	[2]
& qqqq final states for 8 energies		
ATLAS W^+W^- differential cross section in the $e\nu\mu\nu$ channel, $\frac{d\sigma}{dp_{\perp}^T}$,	1	
$p_T > 120 \text{ GeV}$ overflow bin		[225]
ATLAS W^+W^- fiducial differential cross section in the $e\nu\mu\nu$ channel,	14	[58]
$\left rac{d\sigma}{dp_{\ell_1}^T} ight $		
ATLAS Zjj fiducial differential cross section in the $\ell^+\ell^-$ channel, $\frac{d\sigma}{d\Delta\varphi_{jj}}$	12	[60]

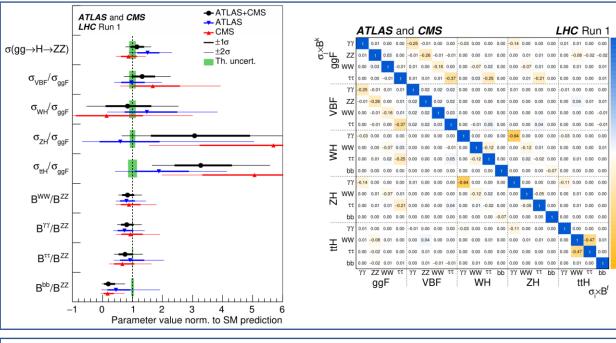

(+ WZ)

 Conservative approach to unknown bin correlations at LEP: fit to subset of angular distribution bins
 1606.06693 Berthier, Bjorn, Trott

$$B_1 = [-1, -0.8], B_2 = [-0.4, -0.2], B_3 = [0.4, 0.6], B_4 = [0.8, 1] \text{ for } \sqrt{s} = \{182.66, 205.92\} \text{ GeV}$$

- LHC WW suppressed linear term
- Zjj recovers interference:

2006.15458 ATLAS



• Higgs:

LHC Run 1 Higgs	$n_{\mathbf{obs}}$	Ref.
ATLAS and CMS LHC Run 1 combination of Higgs signal strengths.	21	[8]
Production: ggF, VBF, ZH, WH & ttH		
Decay: $\gamma \gamma$, ZZ , W^+W^- , $\tau^+\tau^-$ & $b\bar{b}$		
ATLAS inclusive $Z\gamma$ signal strength measurement	1	[9]

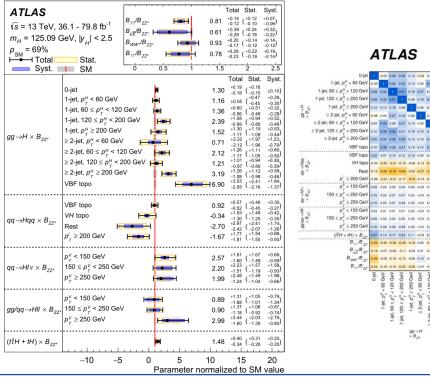
LHC Run 2 Higgs (new)	$n_{\mathbf{obs}}$	Ref.
ATLAS combination of signal strengths and stage 1.0 STXS in $H \to 4\ell$	16 19 25	[10]
including ratios of branching fractions to $\gamma\gamma$, WW^* , $\tau^+\tau^-$ & $b\bar{b}$		
Signal strengths coarse STXS bins fine STXS bins		
CMS LHC combination of Higgs signal strengths.	23	[11]
Production: ggF, VBF, ZH, WH & ttH		
Decay: $\gamma \gamma$, ZZ , W^+W^- , $\tau^+\tau^-$, $b\bar{b}$ & $\mu^+\mu^-$		
CMS stage 1.0 STXS measurements for $H \to \gamma \gamma$.	13 7	[12]
13 parameter fit 7 parameter fit		
CMS stage 1.0 STXS measurements for $H \to \tau^+ \tau^-$	9	[13]
CMS stage 1.1 STXS measurements for $H \to 4\ell$	19	[14]
CMS differential cross section measurements of inclusive Higgs produc-	5 6	[15]
tion in the $WW^* \to \ell\nu\ell\nu$ final state.		
$rac{d\sigma}{dn_{ m jet}} \hspace{0.1cm} \left \hspace{0.1cm} rac{d\sigma}{dp_{H}^{ m T}} ight.$		
ATLAS $H \to Z\gamma$ signal strength.	1	[16]
ATLAS $H \to \mu^+ \mu^-$ signal strength.	1	[17]

To be added: 2009.04363 CMS 3σ evidence for $H \to \mu\mu^-$

α 8.0 α 8.0

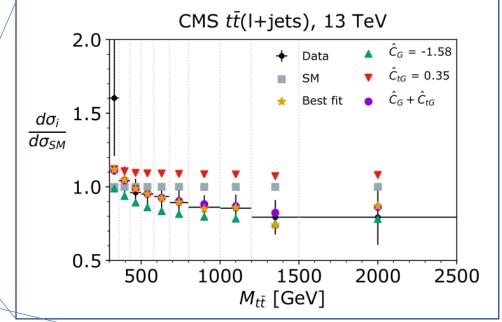
ρ(σ×Β^f,

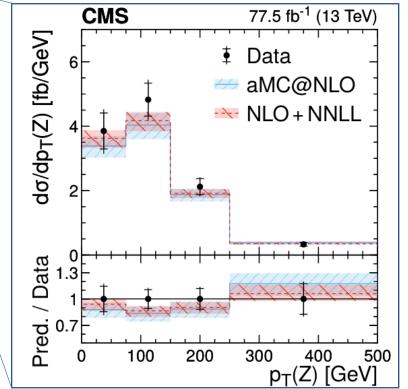
0.4


-0.2

-0.6

-0.8


 \sqrt{s} = 13 TeV, 36.1 - 79.8 fb⁻¹


 $m_H = 125.09 \text{ GeV}, |y_{ij}| < 2.5$

• Top:

Run 2 top	$n_{\mathbf{obs}}$	Ref.
CMS $t\bar{t}$ differential distributions in the dilepton channel.	6	[36,
$\frac{d\sigma}{dm_{+\bar{t}}}$		230]
$\overline{\text{CMS } t\bar{t}}$ differential distributions in the ℓ +jets channel.	10	[37]
$\frac{d\sigma}{dm_{+\bar{t}}}$		
ATLAS measurement of differential $t\bar{t}$ charge asymmetry, $A_C(m_{t\bar{t}})$.	5	[38]
ATLAS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	2	[39]
CMS $t\bar{t}W$ & $t\bar{t}Z$ cross section measurements. $\sigma_{t\bar{t}W} \sigma_{t\bar{t}Z}$	1 1	[40]
CMS $t\bar{t}Z$ differential distributions.	4 4	[41]
$\left \frac{d\sigma}{dp_Z^T} \right \left \frac{d\sigma}{d\cos\theta^*} \right $		
CMS measurement of differential cross sections and charge ratios for t-	5 5	[42]
channel single-top quark production.		
$\left \begin{array}{c} rac{d\sigma}{dp_{t+ar{t}}^T} & \left \begin{array}{c} R_t \left(p_{t+ar{t}}^T ight) \end{array} \right. \end{array} \right $		
$\overline{\text{CMS}}$ measurement of t-channel single-top and anti-top cross sections.	4	[43]
$\sigma_t, \sigma_{ar{t}}, \sigma_{t+ar{t}} \& R_t.$		' '
CMS measurement of the t-channel single-top and anti-top cross sections.	1 1 1 1	[44]
$ \sigma_t \sigma_{\bar{t}} \sigma_{t+\bar{t}} R_t.$		
CMS t-channel single-top differential distributions.	4 4	[45]
$\left egin{array}{c} rac{d\sigma}{dp_{T+ar{t}}^T} & \left egin{array}{c} rac{d\sigma}{d y_{t+ar{t}} } ight \end{array} ight $		
$\overline{\text{ATLAS } tW}$ cross section measurement.	1	[46]
CMS tZ cross section measurement.	1	[47]
$CMS \ tW \ cross \ section \ measurement.$	1	[48]
ATLAS tZ cross section measurement.	1	[49]
CMS $tZ(Z \to \ell^+\ell^-)$ cross section measurement	1	[50]
ATLAS four-top search in the multi-lepton and same-sign dilepton chan-	1	[51]
nels.		
ATLAS four-top search in the single-lepton and opposite-sign dilepton	1	[52]
channels.		
CMS four-top search in the multi-lepton and same-sign dilepton chan-	1	[53]
nels.		
CMS four-top search in the single-lepton and opposite-sign dilepton	1	[54]
channels.		
CMS $t\bar{t}b\bar{b}$ cross section measurement in the all-jet channel.	1	[55]
CMS $t\bar{t}b\bar{b}$ cross section measurement in the dilepton channel.	1	[56]

SMEFT fit

Ellis, Madigan, Mimasu, Sanz, TY [2012.02779]

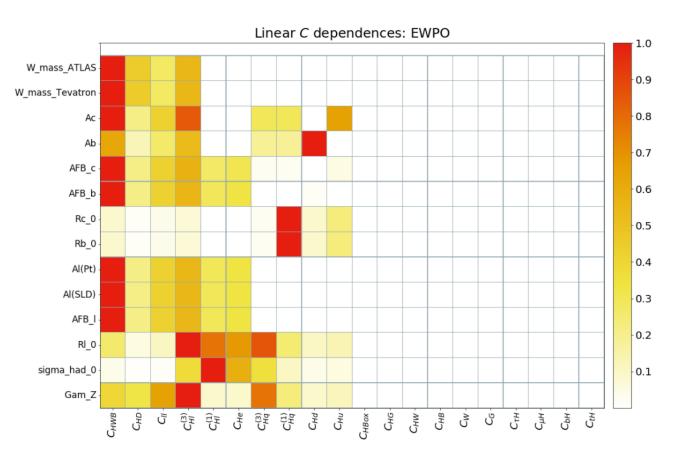
- Combine Top, Higgs, diboson, and electroweak data
- Simultaneous linear fit at leading order to **34** operators
- Matched to simplified models at tree-level and one-loop stop example
- Analytical Hessian method and numerical MCMC algorithm
- Easily extendable database and modular capabilities
- Fitmaker public python code to be released

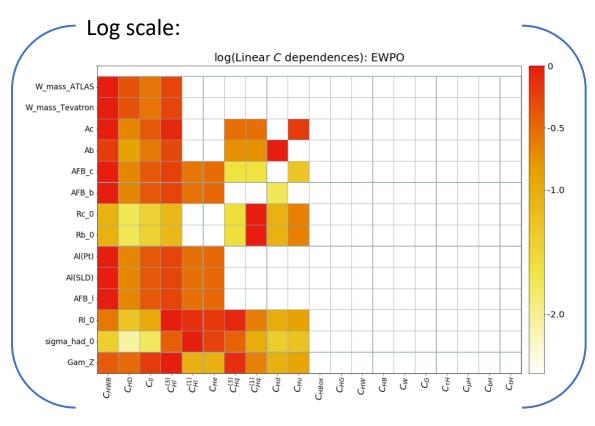
Ellis, Madigan, Mimasu, Sanz, TY [2012.02779]

• Fitmaker: modular library of observables and theories

```
"observable group name": "W mass",
"description": "W mass measurements from Tevatron & ATLAS found in 1701.07240 (Fig. 29).",
   "observable_name": "W_mass",
   "measurement name": "W mass Tevatron",
   "arxiv": "1307.7627",
   "CDS": "",
   "reportnumber": "FERMILAB-PUB-13-289-E",
   "DOI": "10.1103/PhysRevD.88.052018",
   "date": "2013/07/29",
   "experiment": " CDF, D0 collaboration(s).",
   "description": "Combination of CDF and D0 $W$-Boson Mass Measurements"
   "value": 80.387,
    "uncertainty": {
     "stat": 0.016,
     "syst": 0.006
    "experiment": "Tevatron",
   "arXiv": "1701.07240"
   "observable name": "W mass",
    "measurement name": "W mass ATLAS",
   "arxiv": "1701.07240",
   "CDS": "http://cds.cern.ch/record/2242923"
   "reportnumber": "CERN-EP-2016-305",
   "DOI":
     "10.1140/epjc/s10052-017-5475-4",
     "10.1140/epjc/s10052-018-6354-3"
    "date": "2017/01/25",
   "experiment": "CERN LHC experiment. ATLAS collaboration.",
   "description": "Measurement of the $W$-boson mass in pp collisions at $\\sqrt{s}=7$ TeV
   "description": "LHC run 1 W boson mass measurement by ATLAS",
   "value": 80.370,
    "uncertainty": {
     "stat": 0.019,
     "syst": 0.006
   "experiment": "LHC",
   "arXiv": "1701.07240"
"correlation matrix": [
 [1.0, 0.0],
 [ 0.0 , 1.0]
```

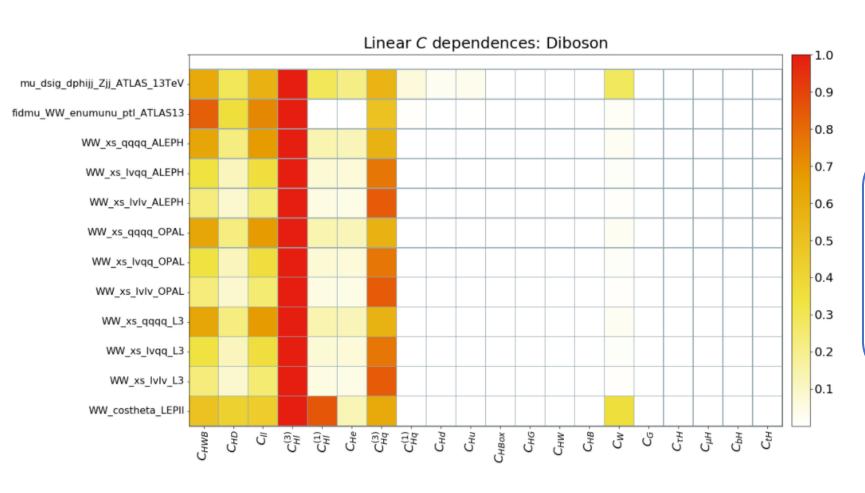
```
"observable name": "mu_dsig_dptZ_ttZ_13TeV_CMS",
"measurement name": "mu dsig dptZ ttZ 13TeV CMS",
"arxiv": "1907.11270",
"CDS": "http://cds.cern.ch/record/2684052",
"reportnumber": "CMS-TOP-18-009",
"DOI": "10.1007/JHEP03(2020)056",
"date": "2019/07/26",
"experiment": "CERN LHC experiment. CMS collaboration.",
"description": "Measurement of top quark pair production in
"value": [1.063, 1.153, 1.11 , 0.943],
"uncertainty": {
 "tot": [0.198, 0.171, 0.173, 0.206]
"uncertainty sigma": 1,
"th flat": true
                   "observable": "ggF0j",
                   "params": [ "CHG", "CuH", "CuG", "CHbox" ],
                   "constant": 1.0,
                  "linear": [ 35.8, -0.122, 0.959, -0.121 ],
                   "quadratic": [
                   [ 321.0, -1.095, 8.45, -1.085 ],
                   -1.095, 0.00371, -0.02925, 0.003695 ],
                   8.45, -0.02925, 0.23, -0.0291],
                    -1.085, 0.003695, -0.0291, 0.00367
                   "lambda_gen": 1000.0
```

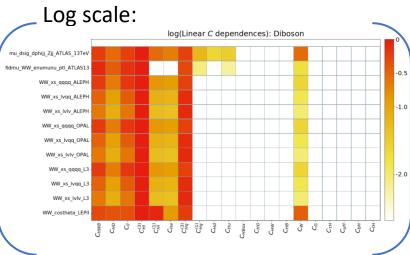

Ellis, Madigan, Mimasu, Sanz, TY [2012.02779]

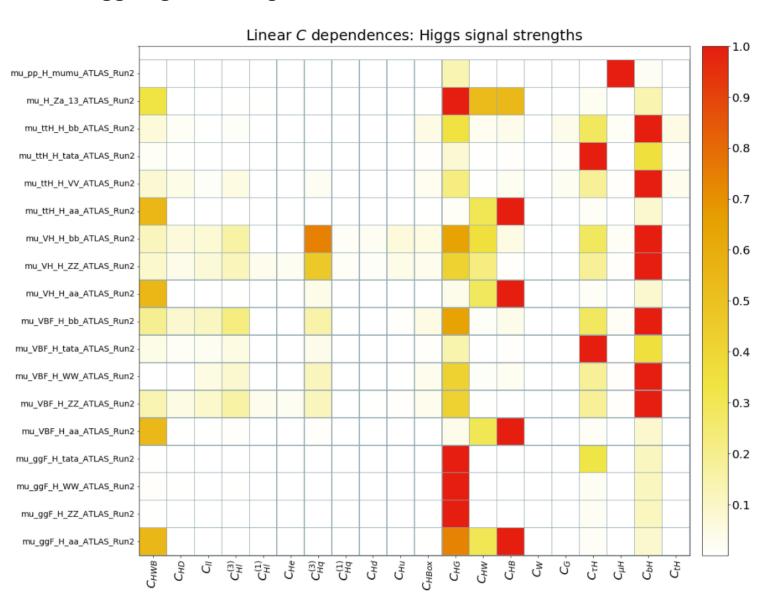

• Fitmaker: modular library of observables and theories

```
1 #import fitmaker
 2 from fitmaker.fitlib.fitter import FitterChiSquare
 3 from fitmaker.theories.SMEFT_fit_full import SMEFT as SMEFT_full
 5 #Load observables
 6 odir = '../fitmaker/observables/'
 8 EWPO_data = ObsGroup({'observable_group_name':"EWPO_data", 'description':"Z pole & W mass data"})
 9 EWPO data.add obs(
   ObsGroup.init_from_json(odir+'EWPO/Zpole.json'),
     ObsGroup.init_from_json(odir+'EWPO/Wmass.json')
12 )
13
14 Diboson data = ObsGroup({'observable group name': "Diboson data", 'description': "LEP & LHC Diboson data"})
15 Diboson data.add obs(
       ObsGroup.init from json(odir+'Diboson/LEP2 Diboson.json'),
       Obs.init from json(odir+'Diboson/fidmu WW enumunu ptl ATLAS13.json')
17
18 )
19
20 | Higgs_data = ObsGroup({'observable_group_name':"Higgs_data", 'description':"Updated Higgs_signal_strength_and_STXS_data'
21 Higgs_data.add_obs(
       ObsGroup.init_from_json(odir + 'Higgs/Run_1/LHC_Run1_Higgs_SignalStrengths.json'),
       ObsGroup.init_from_json(odir + 'Higgs/new/CMS_Run2_Higgs_SignalStrengths.json'),
       ObsGroup.init from ison(odir+'Higgs/new ATLAS/ATLAS STXS fine/ATLAS Run2 STXS1p0 H ZZ 41 comb.ison')
25 )
27 EWPO Diboson Higgs data = ObsGroup({'observable group name': "EWPO Diboson Higgs data", 'description': "EWPO, Diboson & Hi
28 EWPO Diboson Higgs data.add obs(
     EWPO data,
     Diboson data,
     Higgs data
32 )
34 #Load fit
35 | fitter U3 5 = FitterAnalyticalChiSquare(
       arg obsgroup = EWPO Diboson Higgs data,
       arg theory = SMEFT U3 5,
        arg theorykwargs = { 'Lambda':1000.}
39 )
41 #Get fit results
42 marg_bestfitc_list_U3_5 = [fitter_U3_5.get_bestfit(c,marginalise=True)[0] for c in coeffs_U3_5]
43 marg_sd_list_U3_5 = [fitter_U3_5.standard_deviation(c, marginalise=True) for c in coeffs_U3_5]
44
45
```

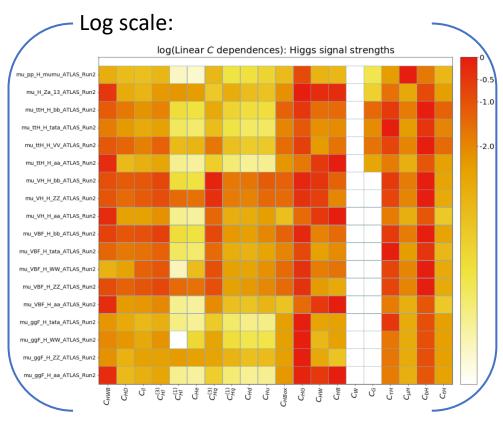
• Keep only linear coefficient dependence
$$\mu_X \equiv \frac{X}{X_{SM}} = 1 + \sum_i \overline{a_i^X} \frac{C_i}{\Lambda^2} + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$


- (For each observable X, normalised such that largest $a_i^X = 1$)
- **EWPO**:

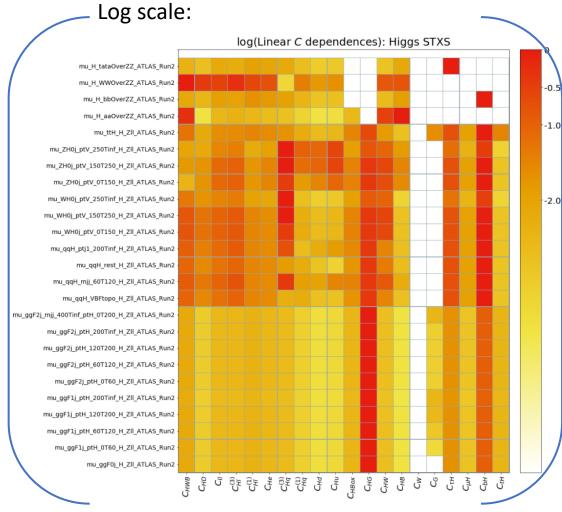


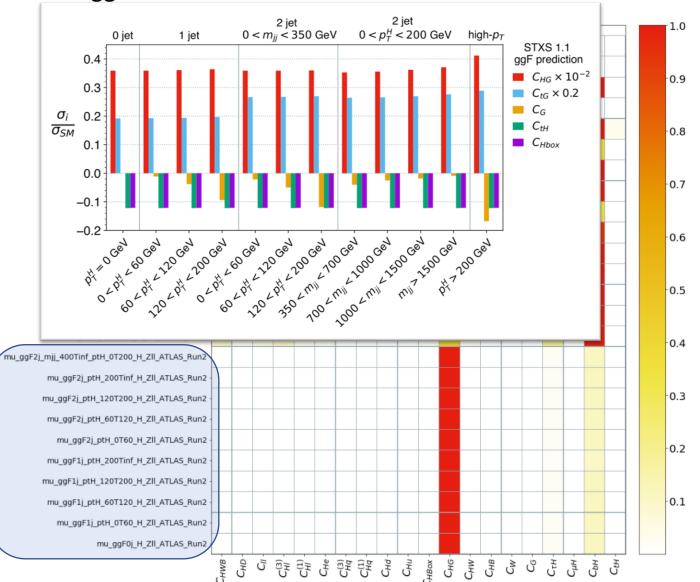

Diboson

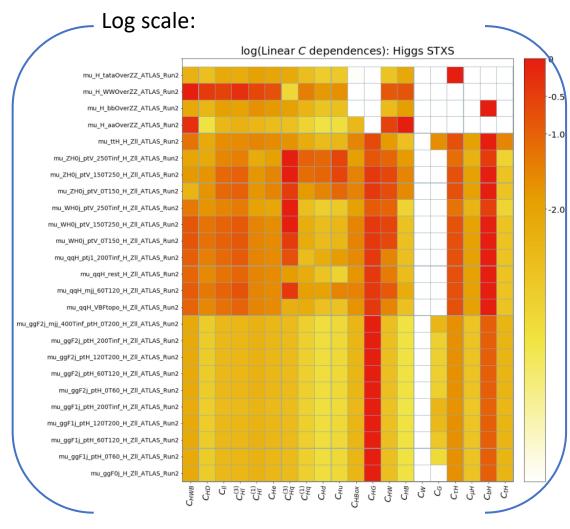
$$\mu_X \equiv \frac{X}{X_{SM}} = 1 + \sum_i a_i^X \frac{C_i}{\Lambda^2} + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

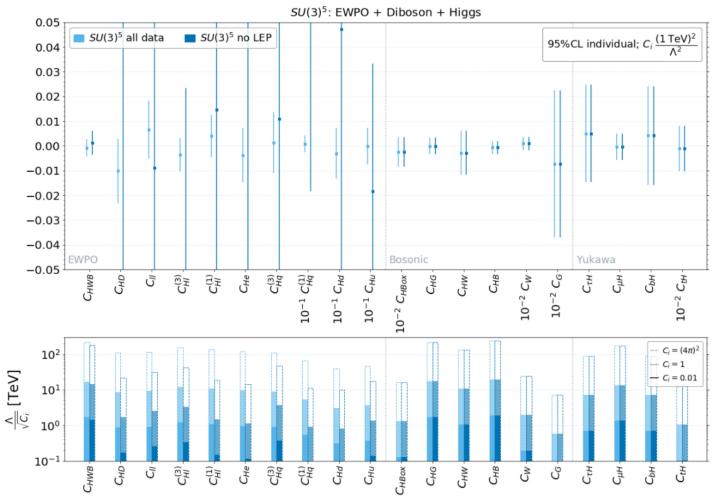


Higgs signal strengths

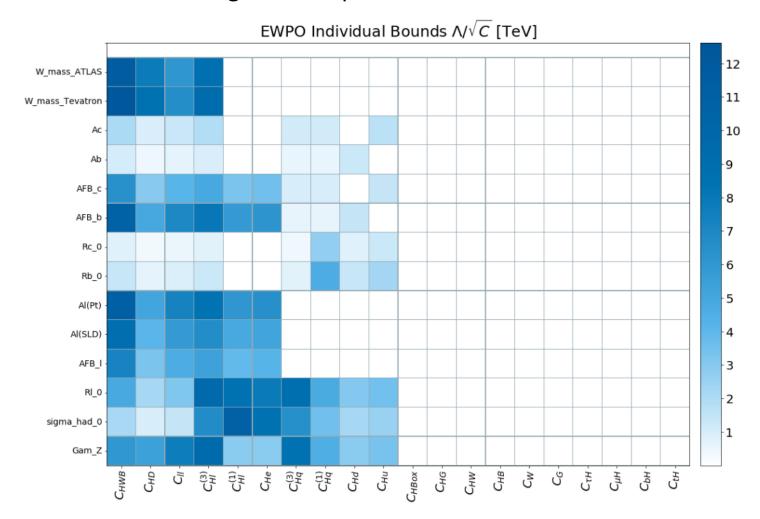

$$\mu_X \equiv \frac{X}{X_{SM}} = 1 + \sum_i a_i^X \frac{C_i}{\Lambda^2} + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$


Higgs STXS

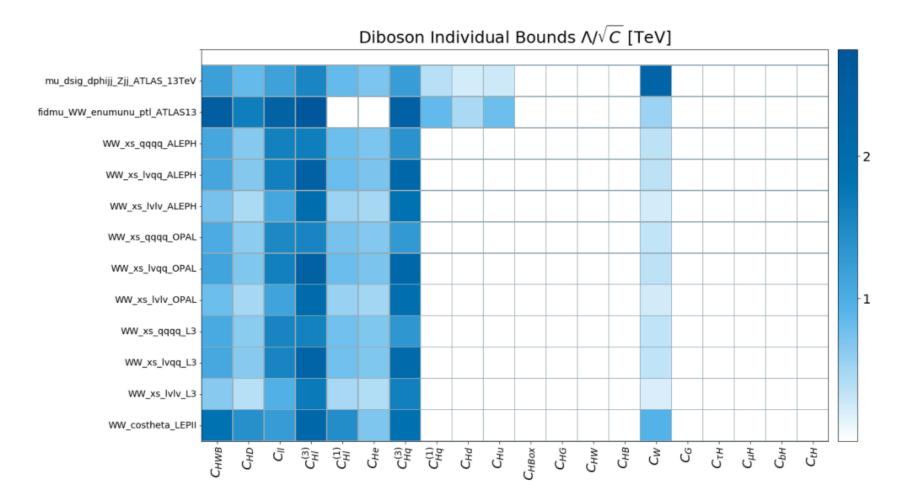

$$\mu_X \equiv \frac{X}{X_{SM}} = 1 + \sum_i \frac{a_i^X}{\Lambda^2} \frac{C_i}{\Lambda^2} + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$



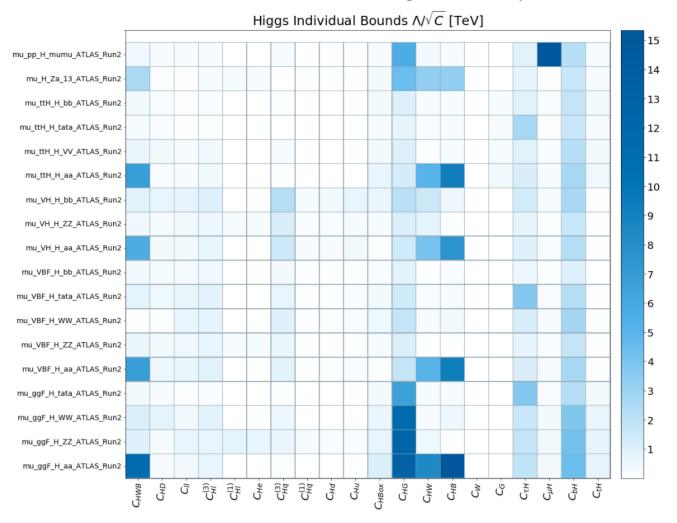
$$\mu_X \equiv \frac{X}{X_{SM}} = 1 + \sum_i \frac{a_i^X}{\Lambda^2} \frac{C_i}{\Lambda^2} + \mathcal{O}\left(\frac{1}{\Lambda^4}\right)$$

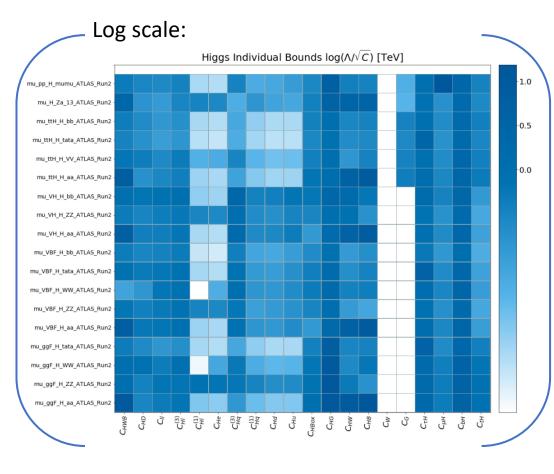


Individual 95% CL bounds switching on one operator at a time

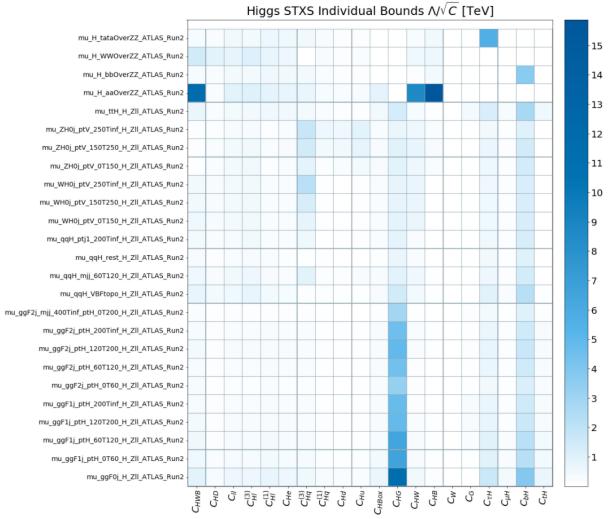

Which observables constrain which operators the most?

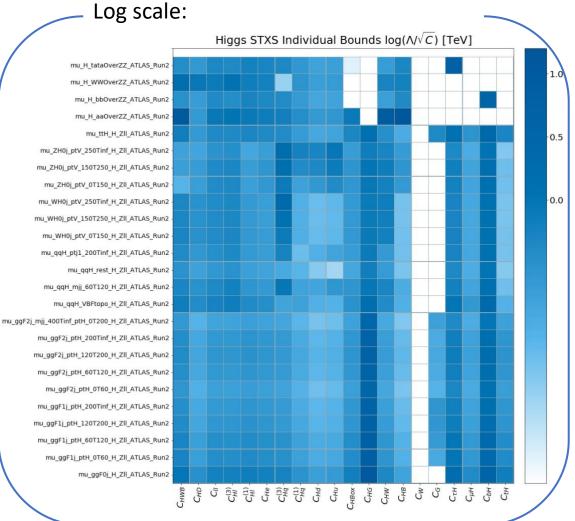
• Individual 95% CL bounds switching on one operator at a time


• Which observables constrain which operators the most?

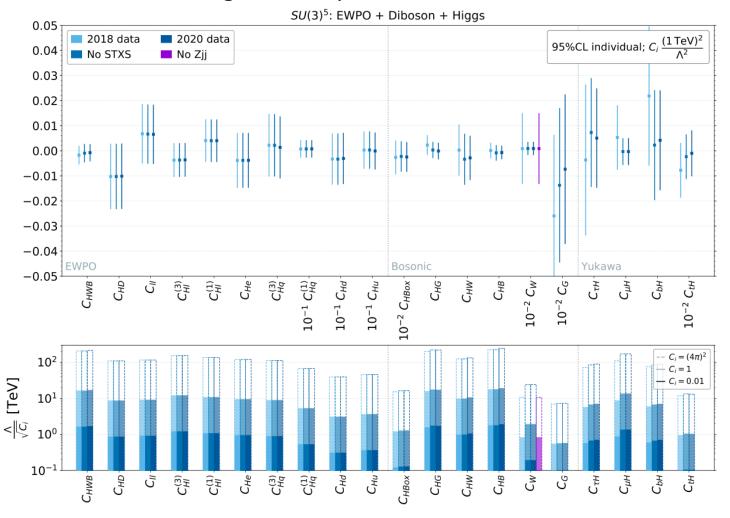

• Individual 95% CL bounds switching on one operator at a time

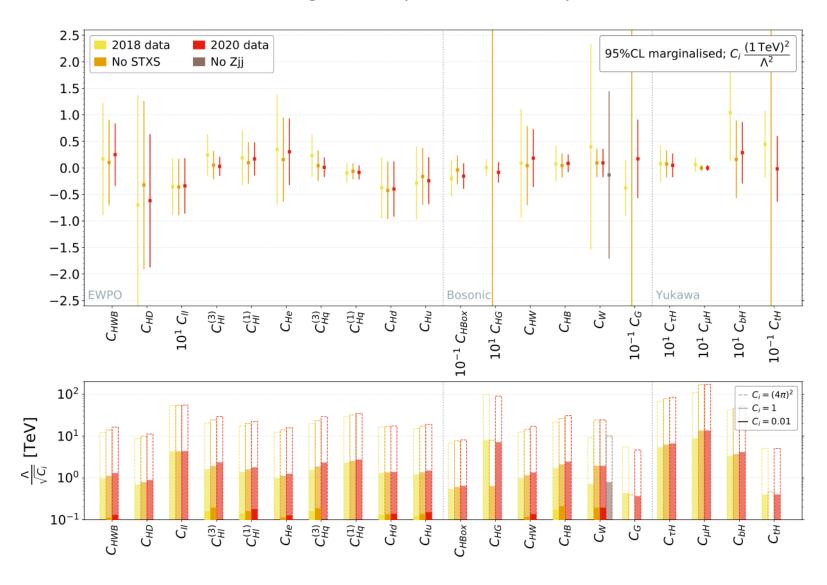
• Which observables constrain which operators the most?


Individual 95% CL bounds switching on one operator at a time

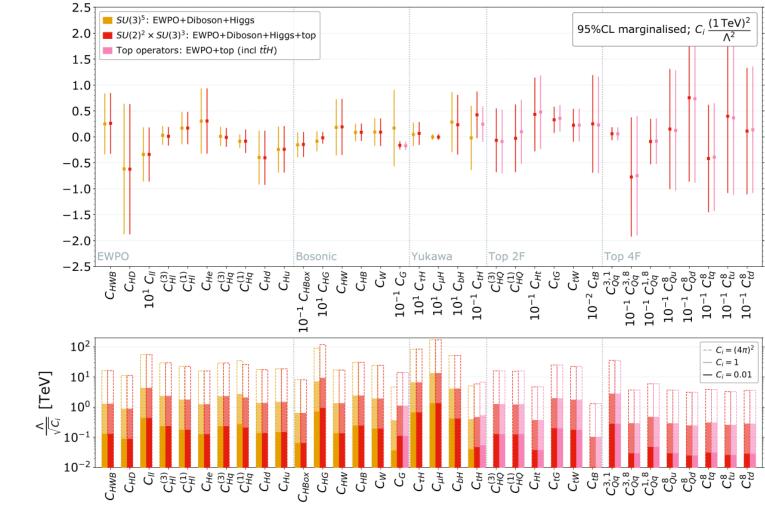


Which observables constrain which operators the most?


Individual 95% CL bounds switching on one operator at a time


• Which observables constrain which operators the most?

Individual 95% CL bounds switching on one operator at a time



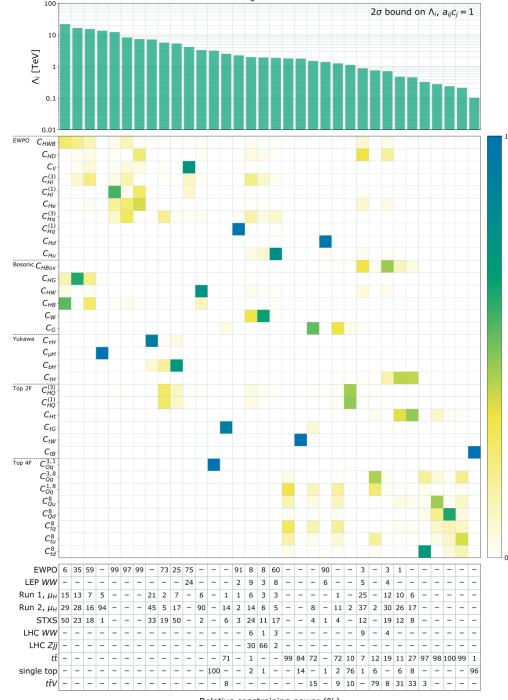
- Individual bounds hardly affected by STXS
- Impact on marginalised constraints

• Marginalised 95% CL bounds allowing all 20 operators to vary

Marginalised 95% CL bounds allowing all 34 operators to vary

Which observables constrain which directions in marginalised fit?

- Marginalised 95% CL bounds allowing all 20 operators to vary
- Which observables constrain which directions in marginalised fit?

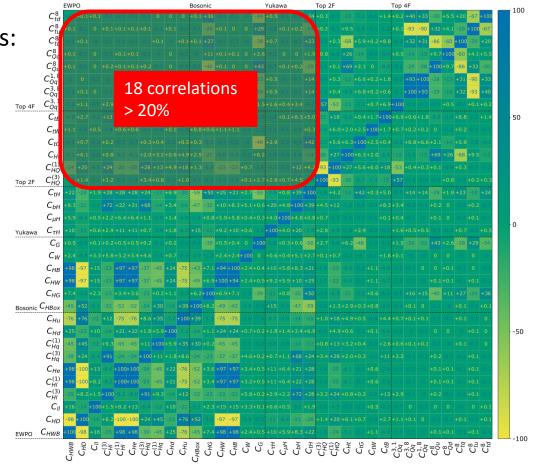

• Principal component analysis: eigenvectors of covariance

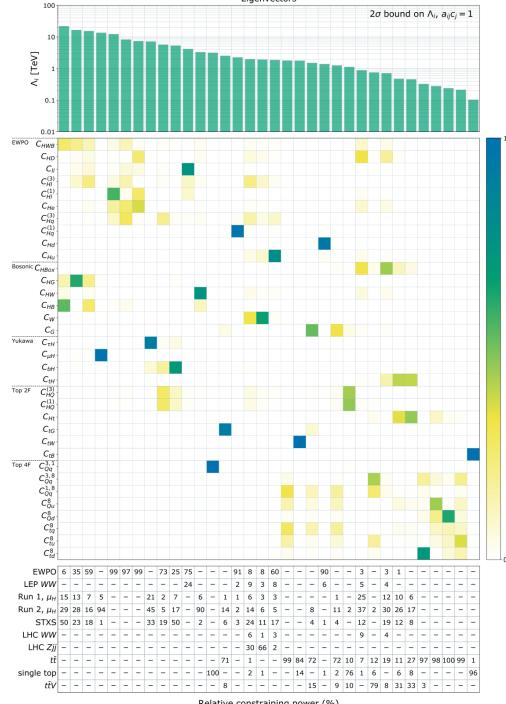
matrix

• Correlations:

+ Top

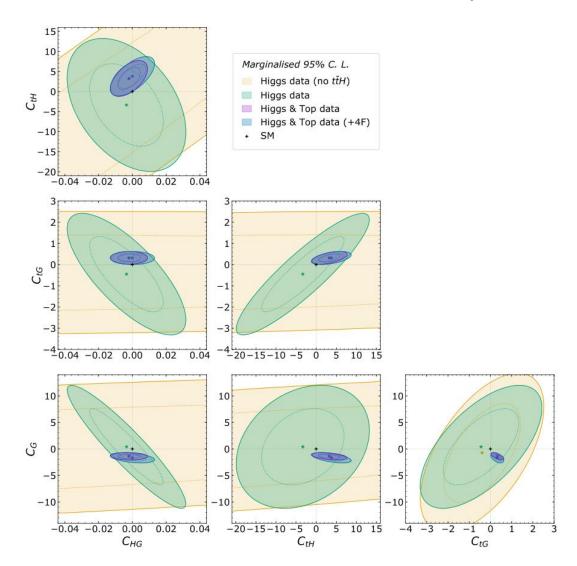
Relative constraining power (%)

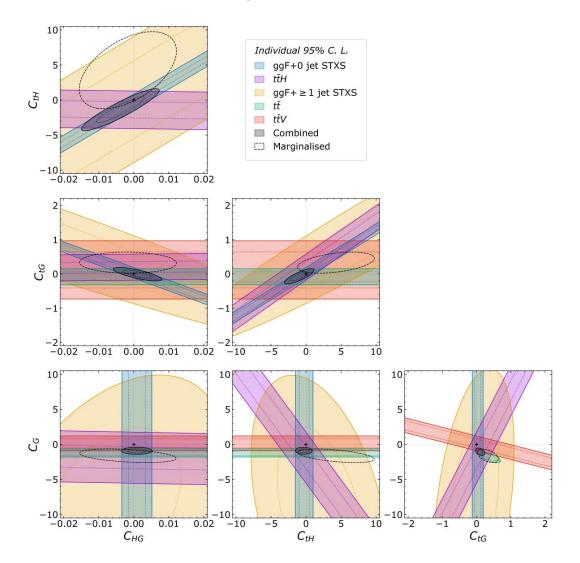

- Marginalised 95% CL bounds allowing all 20 operators to vary
- Which observables constrain which directions in marginalised fit?


• Principal component analysis: eigenvectors of covariance

matrix

• Correlations:


+ Top

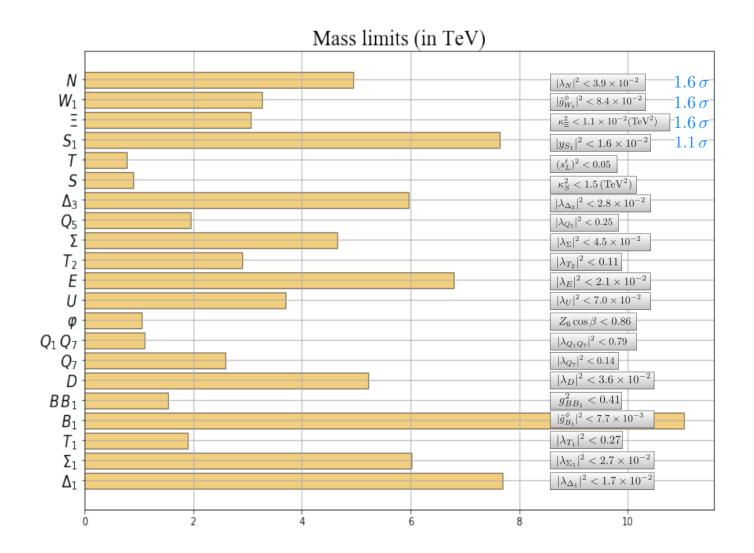


Relative constraining power (%)

- Higgs and Top complementarity:
- Fit to $\{C_{H\square}, C_{HG}, C_{HW}, C_{HB}, C_{tH}, C_{bH}, C_{\tau H}, C_{\mu H} C_G \text{ and } C_{tG}\}$

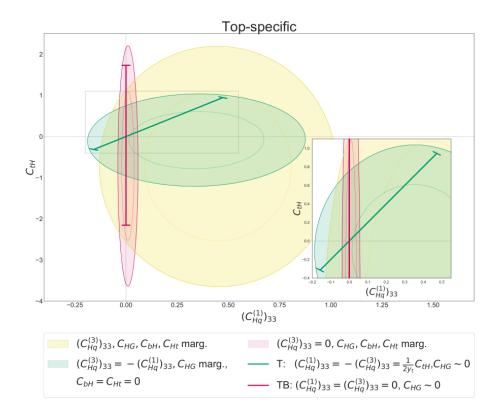
• 2-D fits and marginalised over full fit

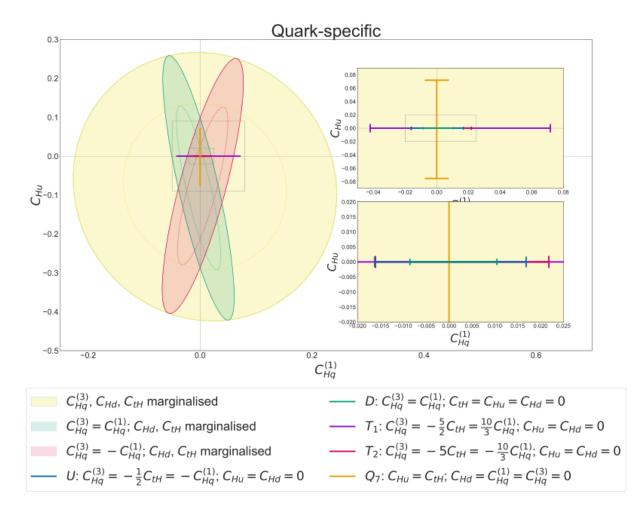
• Simplified models: renormalisable SM extensions

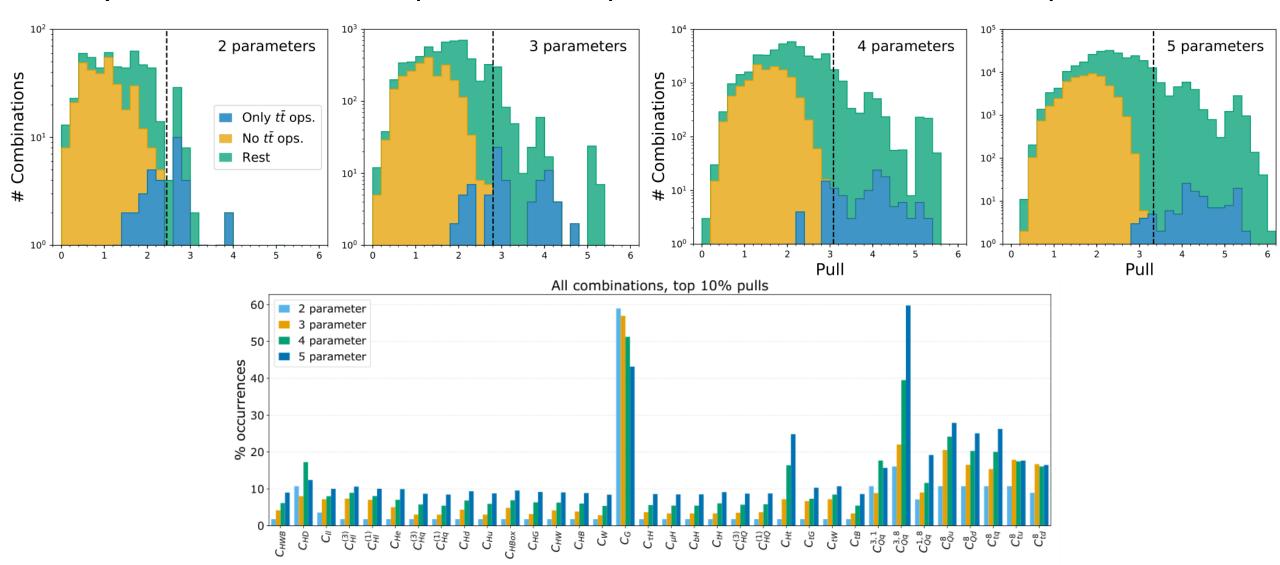

Name	Spin	SU(3)	SU(2)	U(1)	Name	Spin	SU(3)	SU(2)	U(1)
S	0	1	1	0	Δ_1	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
S_1	0	1	1	1	Δ_3	$\frac{1}{2}$	1	2	$-\frac{1}{2}$
φ	0	1	2	$\frac{1}{2}$	Σ	$\frac{1}{2}$	1	3	0
[I]	0	1	3	0	Σ_1	$\frac{1}{2}$	1	3	-1
Ξ_1	0	1	3	1	U	$\frac{1}{2}$	3	1	$\frac{2}{3}$
B	1	1	1	0	D	$\frac{1}{2}$	3	1	$-\frac{1}{3}$
B_1	1	1	1	1	Q_1	$\frac{1}{2}$	3	2	$\frac{1}{6}$
W	1	1	3	0	Q_5	$\frac{1}{2}$	3	2	$-\frac{5}{6}$
W_1	1	1	3	1	Q_7	$\frac{1}{2}$	3	2	$\frac{7}{6}$
N	$\frac{1}{2}$	1	1	0	T_1	$\frac{1}{2}$	3	3	$-\frac{1}{3}$
E	$\frac{1}{2}$	1	1	-1	T_2	$\frac{1}{2}$	3	3	$\frac{2}{3}$
T	$\frac{1}{2}$	3	1	$\frac{2}{3}$	TB	$\frac{1}{2}$	3	2	$\frac{1}{6}$

Model	C_{HD}	C_{ll}	C_{Hl}^3	C^1_{Hl}	C	$C_{H\square}$	$C_{ au H}$	C_{tH}	C
	\cup_{HD}	C_{ll}	\cup_{Hl}	c_{Hl}	C_{He}		$C_{\tau H}$	C_{tH}	C_{bH}
S						-1			
S_1		1							
Σ			$\frac{5}{8}$	$\frac{3}{16}$			$\frac{y_{\tau}}{4}$		
Σ_1			$-\frac{5}{8}$ $-\frac{1}{4}$	$\frac{\frac{3}{16}}{-\frac{3}{16}}$			$\frac{y_{\tau}}{8}$		
N				$\frac{1}{4}$					
E			$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{\tau}}{2}$		
Δ_1					$\begin{array}{c} \frac{1}{2} \\ -\frac{1}{2} \end{array}$		$\frac{y_{\tau}}{2}$		
Δ_3					$-\frac{1}{2}$		$\frac{y_{\tau}}{2}$		
B_1	1					$-\frac{1}{2}$	$\frac{\frac{y_{\tau}}{2}}{2} - \frac{y_{\tau}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
[1]	-2					$\frac{1}{2}$	$ y_{\tau} $	y_t	y_b
W_1	$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$
φ							$-y_{\tau}$	$-y_t$	$-y_b$
$\{B,B_1\}$						1	y_{τ}	y_t	y_b
$\{Q_1,Q_7\}$								y_t	
Model	C_{HG}	C_{Hq}^3	C^1_{Hq}	$(C_{Hq}^3)_{33}$	$(C_{Hq}^1)_{33}$	C_{Hu}	C_{Hd}	C_{tH}	C_{bH}
U		$-\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{4}$	$\frac{1}{4}$			$\frac{y_t}{2}$	
D		$-\frac{1}{4}$	$-\frac{1}{4}$	$-\frac{1}{4}$ $-\frac{1}{4}$	$-\frac{1}{4}$				$\frac{y_b}{2}$
Q_5							$-\frac{1}{2}$		$\frac{y_b}{2}$ $\frac{y_b}{2}$
Q_7						$\frac{1}{2}$		$\frac{y_t}{2}$	
T_1		$-\frac{5}{8}$ $-\frac{5}{8}$	$-\frac{3}{16}$ $\frac{3}{16}$	$-\frac{5}{8}$	$-\frac{3}{16}$			$\frac{y_t}{4}$	$\frac{y_b}{8}$
T_2		$-\frac{5}{8}$	$\frac{3}{16}$	$-\frac{5}{8}$	$\frac{3}{16}$			$\frac{y_t}{8}$	$\frac{y_b}{4}$
T	$-\frac{M_T^2}{v^2} \frac{\alpha_s(0.02)}{8\pi}$			$-\frac{5}{8} \\ -\frac{5}{8} \\ -\frac{1}{2} \frac{M_T^2}{v^2}$	$ \begin{array}{r} -\frac{3}{16} \\ \frac{3}{16} \\ \frac{1}{2} \frac{M_T^2}{v^2} \end{array} $			$\frac{\frac{y_t}{8}}{8}$ $y_t \frac{M_T^2}{v^2}$	

Classification and tree-level matching dictionary


De Blas, Criado, Perez-Victoria, Santiago [1711.10391]


• Streamlines process of interpreting limits on BSM parameter space


• Streamlines process of interpreting limits on BSM parameter space

Boson-specific: $(C_{HD}, C_{H\Box}, C_{tH})$, Lepton-specific: $(C_{He}, C_{H\ell}^{(1,3)}, C_{\ell\ell})$, Quark-specific: $(C_{Hu}, C_{Hd}, C_{Hq}^{(1,3)}, C_{tH})$, Top-specific: $((C_{Hq}^{(1)})_{33}, (C_{Hq}^{(3)})_{33}, C_{HG}, C_{bH}, C_{tH}, C_{Ht})$

• Systematic search for pulls in all N parameter combinations of operators

Conclusion

QED+Fermi theory → chiral electroweak+pion EFT

Chiral electroweak EFT+Higgs → SM

• $SM \rightarrow SMEFT$

• SMEFT \rightarrow ?

• Fitmaker framework for SMEFT fits