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Likelihood land

The likelihood (see e.g., Cousins 2020)

L(Θ) = p (D jM, Θ)

tells us the probability (density) of the observed data, D, given a

particular model, M, and choice of parameters.

This is a function of the model’s parameters, Θ, for fixed, observed

data.
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Likelihood land

Key part of Bayesian analysis

Likelihood� Prior density = Evidence� Posterior density

in which we marginalise over unknown parameters by

multi-dimensional integration over the likelihood function.

Frequentist analysis, on the other hand, usually involves finding

the best-fit parameters by finding the maximum of the likelihood

function.

2/21



General pitfalls



Pitfall — the likelihood is not enough?

• Frequentist analysis violates likelihood principle (Berger and

Wolpert 1988) and in fact requires whole sampling distribution

p (D jM, Θ)

as a distribution in the data, D.

• O�en we make asymptotic approximations (Wilks 1938;

Cherno� 1954) for the sampling distribution that only require

the likelihood, e.g., 2� log likelihood ratio follows a χ2

distribution. See e.g. Cowan et al. 2011.

• But what if those assumptions don’t apply? See e.g., Algeri

et al. 2019. Should we be talking about public sampling

distributions?
1

1
See also Prosper’s talk on Monday. Perhaps this is a ma�er of terminology and by public likelihoods we really mean

public statistical models. Not clear to me at least.

3/21



Common pitfalls

Shape
Likelihood could contain non-convex features, e.g., the classic

Rosenbrock banana shape. Challenging for traditional

optimisation and MCMC algorithms
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Common pitfalls

Multi-modal
Likelihood could contain several distinct modes — how to find

them all and the best one? (figure from Balázs et al. 2021)
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Common pitfalls

Curse of dimensionality
Performance of numerical algorithms deteriorate exponentially

with dimension
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Common pitfalls

Compression

If the best-fit is a flagpole in the Atlantic ocean, it could easily be
missed (Bal�azs et al. 2021)

If sampling from the prior or if estimating the compression is
important, convergence could be slow (Skilling 2006) 4/21
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