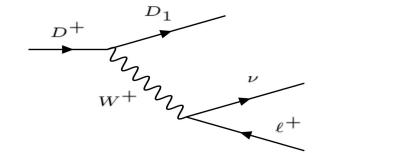
Exploring Multilepton Signatures From Dark Matter Southampton at the LHC

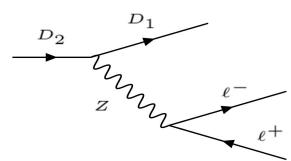
Queen Mary University of London

Arran Freegard

Supervisors: A. Belyaev, U. Blumenschein & S. Moretti

6th Workshop of the BSM Re-interpretation Forum 19/02/21





Outline

- Motivations for beyond mono-X searches, e.g. multilepton+missing ET
- Two representative examples of Minimal consistent Dark Matter Models (MCDM)
- Multilepton+missing ET is complementary to LLP signature from weak multiplet DM
- We validate our own analysis code against previous analyses
- New limits for I2HDM and MFDM and suggestion for a better parameterisation
- The map of 2&3 lepton channel cross-section limits and efficiencies using CheckMATE for a wider DM re-interpretation analysis for our community

Inert 2 Higgs Doublet Model (I2HDM)

$$\mathcal{L}_{\phi} = |D_{\mu}\phi_{1}|^{2} + |D_{\mu}\phi_{2}|^{2} - V(\phi_{1}, \phi_{2})$$

$$V = -m_{1}^{2}(\phi_{1}^{\dagger}\phi_{1}) - m_{2}^{2}(\phi_{2}^{\dagger}\phi_{2}) + \lambda_{1}(\phi_{1}^{\dagger}\phi_{1})^{2} + \lambda_{2}(\phi_{2}^{\dagger}\phi_{2})^{2} + \lambda_{3}(\phi_{1}^{\dagger}\phi_{1})(\phi_{2}^{\dagger}\phi_{2}) + \lambda_{4}(\phi_{2}^{\dagger}\phi_{1})(\phi_{1}^{\dagger}\phi_{2})$$

$$M_{H}^{2} = 2\lambda_{1}v^{2} = 2m_{1}^{2} \qquad M_{D^{+}}^{2} = \frac{1}{2}\lambda_{3}v^{2} - m_{2}^{2} \qquad + \frac{\lambda_{5}}{2}[(\phi_{1}^{\dagger}\phi_{2})^{2} + (\phi_{2}^{\dagger}\phi_{1})^{2}]$$

$$M_{D_{1}}^{2} = \frac{1}{2}(\lambda_{3} + \lambda_{4} - |\lambda_{5}|)v^{2} - m_{2}^{2} \qquad M_{D_{2}}^{2} = \frac{1}{2}(\lambda_{3} + \lambda_{4} + |\lambda_{5}|)v^{2} - m_{2}^{2} > M_{D_{1}}^{2}$$

- **1.** λ_2 is quartic inert doublet self-coupling **2.** $\lambda_{345}=\lambda_3+\lambda_4+\lambda_5$ is Higgs-DM coupling: HD_1D_1
- **3.** M_{D1} is DM mass **4.** M_{D2} is second lightest, neutral Higgs mass **5.** M_{D+} Is charged Higgs mass

Relevant parameters for our study: $[M_{D_1}, M_{D_2}, M_{D_+}, \lambda_2, \lambda_{345}] \longrightarrow [M_{D_1}, M_{D_2}, M_{D_+}]$

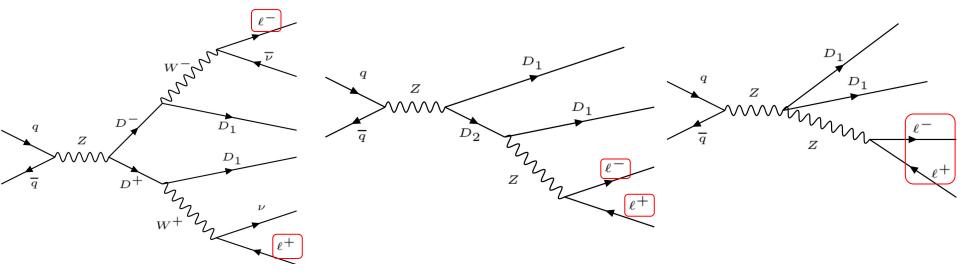
Parameterisations which are more physical for our analysis: $\Delta M_{D2} = M_{D2} - M_{D+}$ $[M_{D1}, \Delta M_{DP}, \Delta M_{D2}]$ $\Delta M_{DP} = M_{D+} - M_{D1}$

Minimal Fermion Dark Matter (MFDM)

$$\mathcal{L}_{FDM} = \mathcal{L}_{SM} + \bar{\psi}(i\not D - m_{\psi})\psi + \frac{1}{2}\bar{\chi}_{s}^{0}(i\not \partial - m_{s})\chi_{s}^{0} - (Y(\bar{\psi}\Phi\chi_{s}^{0}) + h.c.)$$

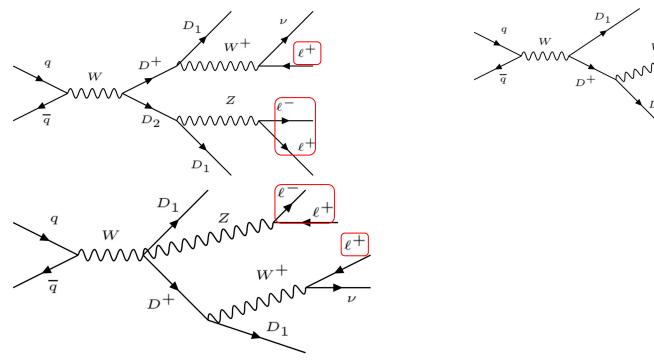
- Minimal model with an EW fermion DM doublet
- To provide provide the correct amount of relic density, suppress DM scattering through intermediate

Z/Higgs boson:

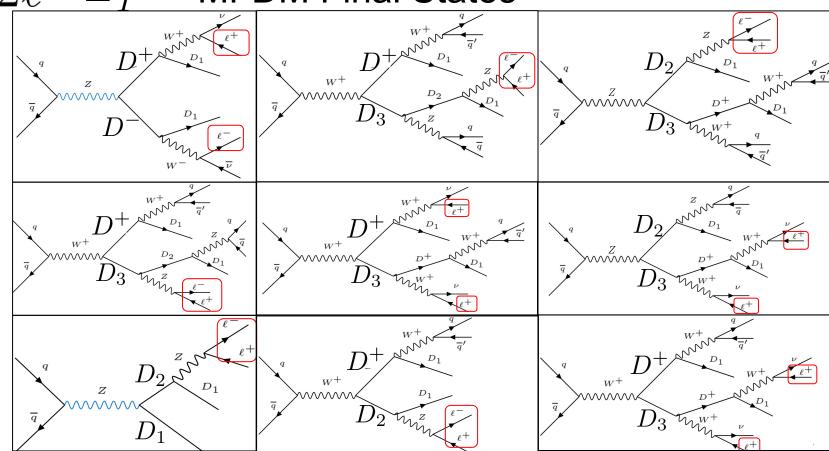

o Majorana neutral D-odd particles
$$\chi_1^0$$
, χ_2^0 $\psi = \begin{pmatrix} \chi^+ \\ \frac{1}{\sqrt{2}} \left(\chi_1^0 + i\chi_2^0\right) \end{pmatrix}$

- \circ additional Majorana singlet fermion χ_s^0
- χ_1^0 and χ_s^0 mix via Yukawa coupling, χ_2^0 and χ^+ are mass degenerate $Y_{DM} = \frac{\sqrt{(M_{D3} M_{DP})(M_{DP} M_{D1})}}{v}$
- **1.** M_{D1} is DM mass **2.** $M_{DP}=M_{D2}$ is chargino mass **3.** M_{D3} is third lightest, neutralino mass

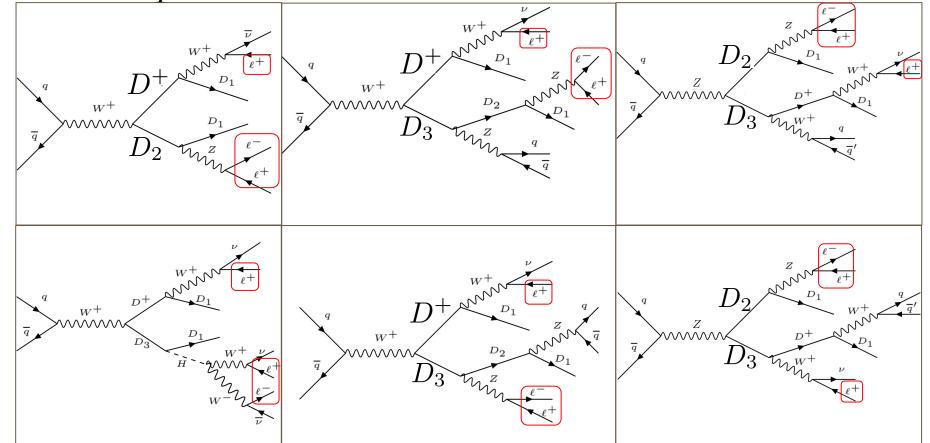
$$M_{D3} > M_{DP} = M_{D2} > M_{D1}$$


Parameterisations which are more physical for our analysis: $\Delta M_{D3} = M_{D3} - M_{DP}$ $[M_{D1}, \Delta M_{DP}, \Delta M_{D3}]$ $\Delta M_{DP} = M_{DP} - M_{D1}$ $Y_{DM} = \frac{\sqrt{\Delta M_{D3} \Delta M_D}}{2}$

2ℓ + E_T^{miss} I2HDM Final States


- DM decays via Z production
- Looking at Higgs funnel: λ_{345} ~ 0, and λ_2 not relevant

3ℓ + E_T^{miss} I2HDM Final States



DM decays via W production, x2 for the +/- processes

 2ℓ + E_T^{miss} MFDM Final States

3ℓ + E_T^{miss} MFDM Final States

HEP Tools

- CalcHEP: Parton-level event production and decays: LHE file output
- CheckMATE (+ Pythia + Delphes): Decays, parton-showers, detector effects and analysis checks
- 8 TeV: written new analysis for final states with 2ℓ and E_T^{miss}
- 13 TeV: Check any available ATLAS and CMS analyses, lists 2ℓ and 3ℓ channels

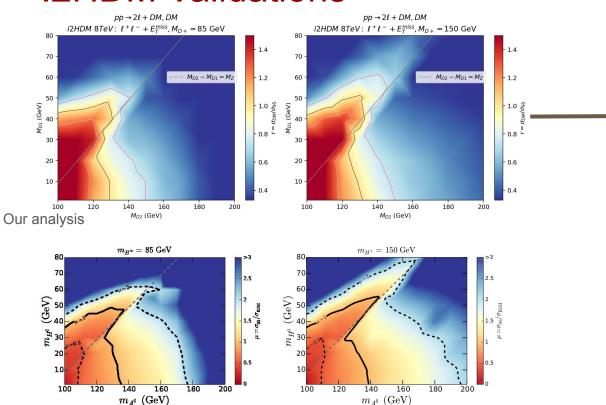
$$\mu = \frac{\sigma_{DM} - \text{ Cross-section of DM events produced}}{\sigma_{95} - \text{ Cross-section required to exclude point at 95\% confidence level}}$$

ullet Point excluded if $\,\mu \geq 1\,$

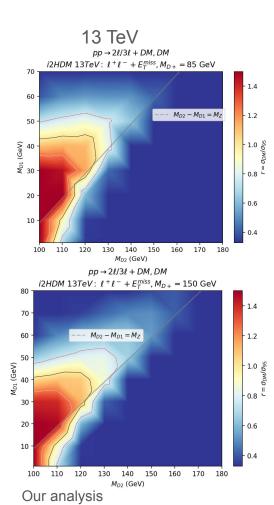
8 TeV Analysis Cuts

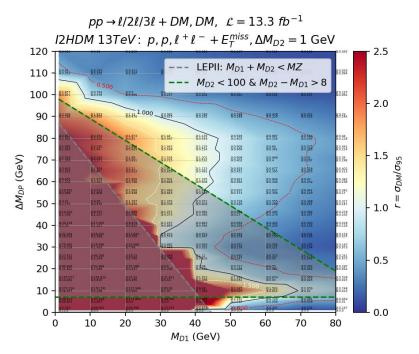
8 TeV ATLAS SUSY analysis <u>arXiv:1403.5294</u>
 cutflows for dilepon+MET finals states,
 implemented in CheckMATE

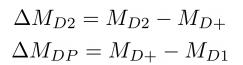
Global Cut	
E_T^{miss}	> 0 GeV
Base leptons	2
e + e - trigger	97%
$\mu^+\mu^-$ trigger	89%
$e\mu$ trigger	75%
Signal leptons	2
Leading lepton p_T	> 35 GeV
sub-leading lepton p_T	> 20 GeV
$M_{\ell\ell}$	> 20 GeV
jets	0
$ M_{\ell\ell} - M_Z $	> 10 GeV

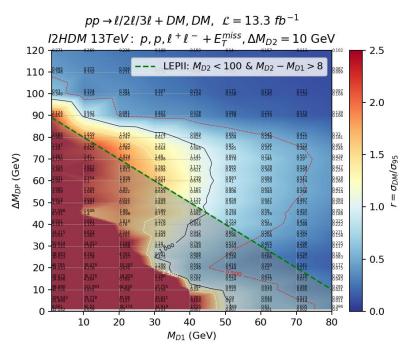

SR	m_{T2}^{90}	m_{T2}^{120}	m_{T2}^{150}	WWa	WWb	WWc	Zjets
$M_{\ell\ell}$				< 120	< 170		
$p_T(\ell\ell)$				> 80			> 80
$E_T^{miss,rel}$				> 80			> 80
m_{T2}	> 90	> 120	> 150		> 90	> 100	
						$\overline{}$	
				ı	oest	fo	r
				the	ese	resı	ults

 8 TeV ATLAS Higgs analysis <u>arXiv:1402.3244</u> cutflows for dilepon+MET finals states, implemented in CheckMATE

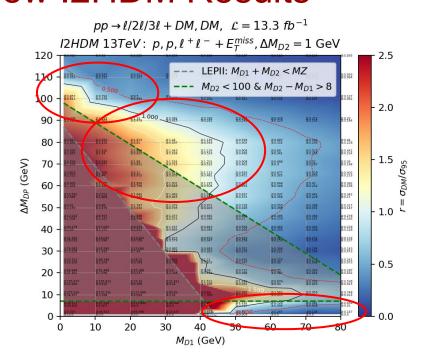

Global Cut
Base leptons

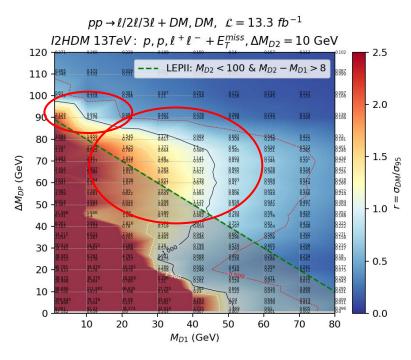

Validated against MadAnalysis (Belanger et.al paper <u>arXiv:1503.07367</u>)

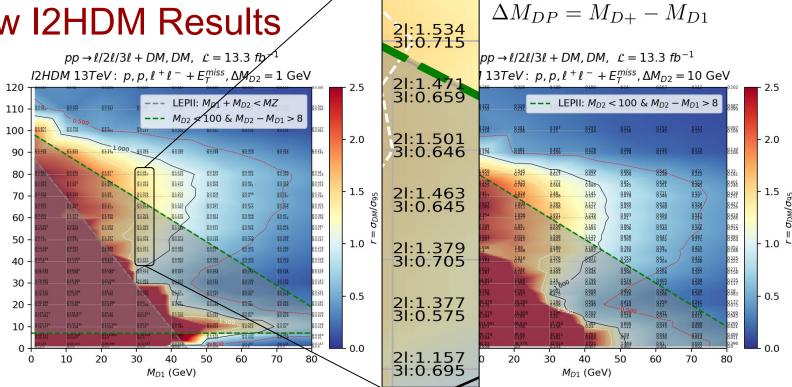

I2HDM Validations 8 TeV



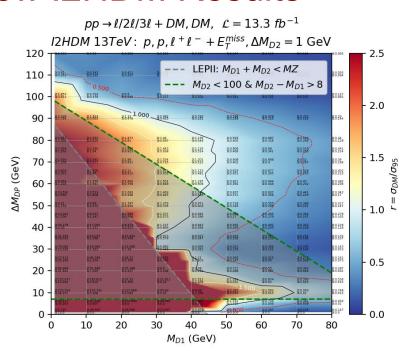
Bélanger, et al. "Dilepton Constraints in the Inert Doublet Model from Run 1 of the LHC." Physical Review D 91.11 (2015) [arXiv:1503.07367]

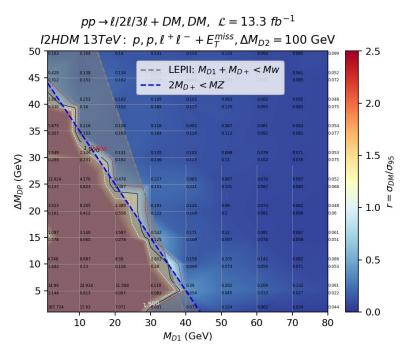





- ΔM_{D2} = 1 GeV: Small wedge above $M_{D1} > 50 \, \text{GeV}$ and below $\Delta M_{DP} < 8 \, \text{GeV}$ still allowed by LEP
- M_{DP} is a better variable, results not dependent on M_{D2} , only require plane of 2 variables
- Important contributions from 3-lepton (up to 70%) which could be combined with 2-lepton

$\Delta M_{D2} = M_{D2} - M_{D+}$ $\Delta M_{DP} = M_{D+} - M_{D1}$


- ΔM_{D2} = 1 GeV: Small wedge above $M_{D1} > 50\,\mathrm{GeV}$ and below $\Delta M_{DP} < 8\,\mathrm{GeV}$ still allowed by LEP
- M_{DP} is a better variable, results not dependent on M_{D2} , only require plane of 2 variables
- Important contributions from 3-lepton (up to 70%) which could be combined with 2-lepton


2l:1.443 3l:0.638

 $\Delta M_{D2} = M_{D2} - M_{D+1}$

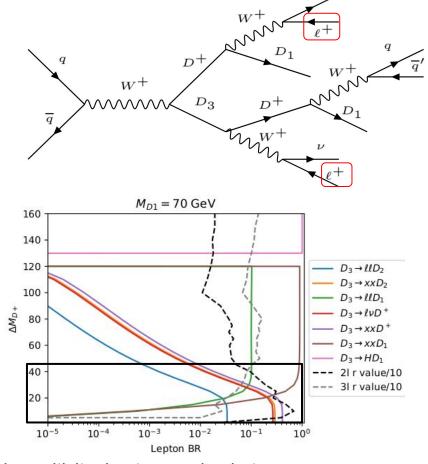
- ΔM_{D2} = 1 GeV: Small wedge above $M_{D1} > 50$ GeV and below $\Delta M_{DP} < 8$ GeV still allowed by LEP
- M_{DP} is a better variable, results not dependent on M_{D2} , only require plane of 2 variables
- Important contributions from 3-lepton (up to 70%) which could be combined with 2-lepton

$$\Delta M_{D2} = M_{D2} - M_{D+}$$
$$\Delta M_{DP} = M_{D+} - M_{D1}$$

• Increasing ΔM_{D2} to 200 GeV means the Z veto $M_{\ell\ell}$ > 100 GeV requirement can no longer be fulfilled as production cross-section of the heavier states has fallen

I2HDM

	Sample A	Sample B	Sample C
No# Events:	50,000	150,000	100,000
Production:	$pp \to D^+D^-$ $pp \to D_2D_1$	$pp \to D^{\pm}D_2$	$pp o ZD_1D_1$
Decays:	$D^{\pm} \to (W^{\pm} \to \ell^{\pm} \nu) D_1$ $D_2 \to (Z \to \ell^{+} \ell^{-}) D_1$	$D_2 \to (Z \to \ell^+ \ell^-) D_1$	$Z \to \ell^+ \ell^-$


While the genuine 2-2 process $pp \to D_2D_1$ is separate to 3-body decay $pp \to ZD_1D_1$, width of D_2 is small, so expected interference between these diagrams is small

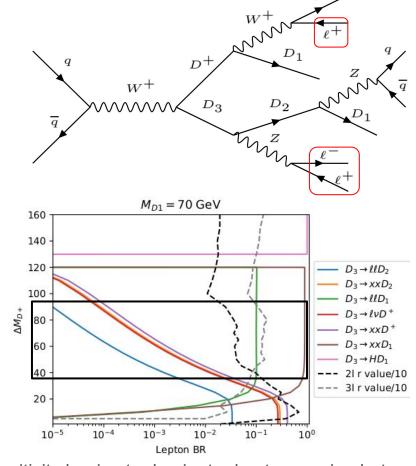
MFDM

	Sample A	Sample B	Sample C
No# Events:	50,000	150,000	100,000
Production:	$pp \to D^+D^-$ $pp \to D_2D_1$	$pp \to D_2 D_3$	$pp \to D^{\pm}D_2$ $pp \to D^{\pm}D_3$
Decays:	$D^{\pm} \to (W^{\pm} \to \ell^{\pm} \nu) D_1$ $D_2 \to (Z \to \ell^{+} \ell^{-}) D_1$	Any	$D_2 \to (Z \to \ell^+ \ell^-) D_1$ $D_3 \to (W^{\pm} \to \ell^{\pm} \nu) D^{\pm}$ $D_3 \to (Z \to \ell^+ \ell^-) D_2$

MFDM Results

 $pp \to \ell/2\ell/3\ell + DM, DM, \ \mathcal{L} = 13.3 \ fb^{-1}$ MFDM 13TeV: $p, p, \ell^+\ell^- + E_T^{miss}, \Delta M_{D3} = 1 \text{ GeV}$ 2.5 300 290 LEP: $M_{D+} = 100$ 2.0 1.5 S6D/WQD = 1.0 0.5 60 70 80 90 100 110 120 130 140 150 160 170 180

Similar shapes to I2HDM, but with 3-lepton channel sensitivity due to crossing between

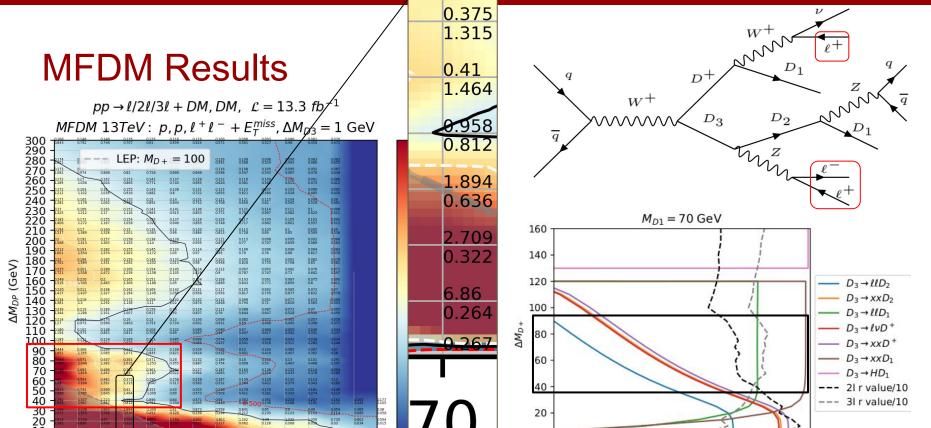

$$\mathbf{D}_3 \to \ell \nu D_1 \qquad D_3 \to Z(\to \ell \ell) D_1$$

 M_{D1} (GeV)

$$D^{\pm}(\to \ell\nu D_1)D_3 \qquad \Delta M_{DP} = 45$$

MFDM Results

 $pp \to \ell/2\ell/3\ell + DM, DM, \ \mathcal{L} = 13.3 \ fb^{-1}$ MFDM 13TeV: $p, p, \ell^+\ell^- + E_T^{miss}, \Delta M_{D3} = 1 \text{ GeV}$ 2.5 300 290 LEP: $M_{D+} = 100$ 2.0 1.5 S60/WQD = 1.0 0.5 90 100 110 120 130 140 150 160 170 180



Similar shapes to I2HDM, but 3-lepton channel sensitivity begins to dominate due to crossing between

$$D_3 \to \ell \nu D_1$$
 $D_3 \to Z(\to \ell \ell) D_1$

 M_{D1} (GeV)

$$D^{\pm}(\rightarrow \ell \nu D_1)D_3 \qquad \Delta M_{DP} = 45$$

• Similar shapes to I2HDM, but 3-lepton channel sensitivity begins to dominate due to crossing between

10-5

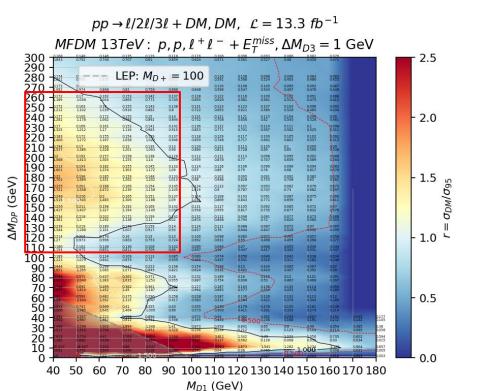
$$D_3 \to \ell \nu D_1$$
 $D_3 \to Z(\to \ell \ell) D_1$

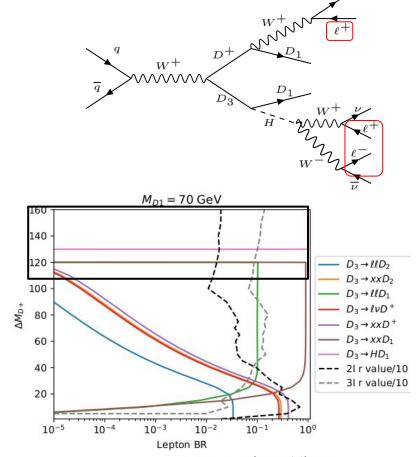
50 60 70 80 90 100 110 120 130 140 150 160 170 180

 M_{D1} (GeV)

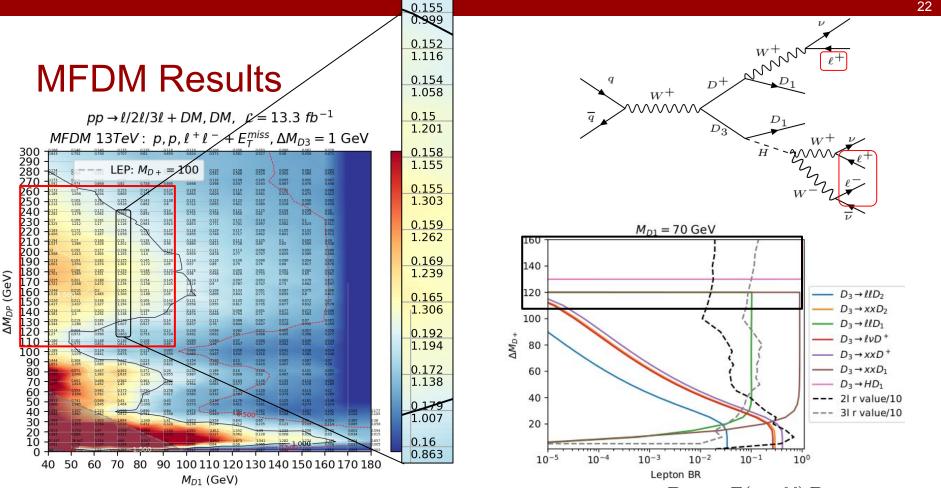
$$D^{\pm}(\rightarrow \ell \nu D_1)D_3 \qquad \Delta M_{DP} = 45$$

 10^{-1}

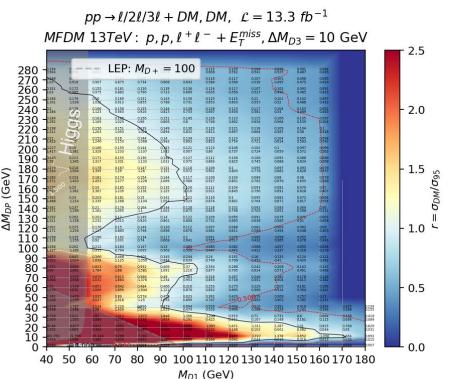

10-2

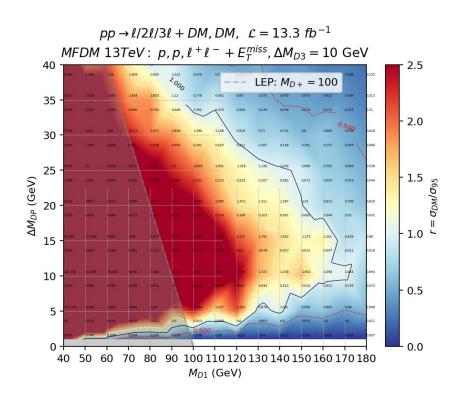

Lepton BR

 10^{-3}

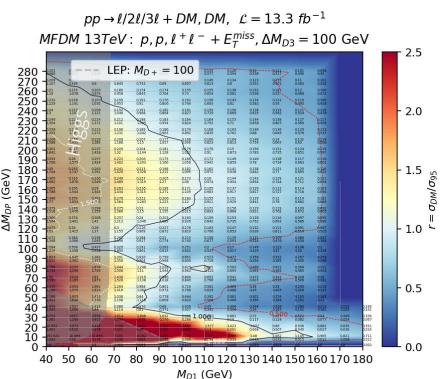

 10^{-4}

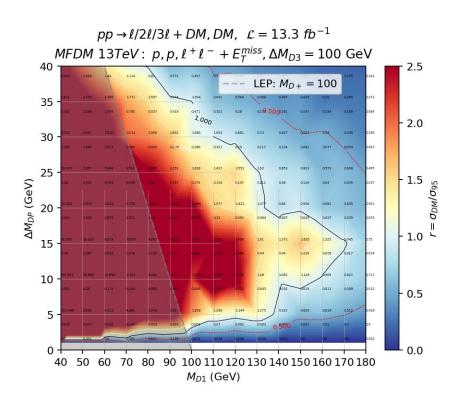
MFDM Results




Second shape due to 3-lepton channel sensitivity due to Higgs decay $D_3 \to Z(\to \ell\ell)D_1$ to $D_3 \to H(\to W^+W^-)D_1$ with production of $D^\pm(\to \ell\nu D_1)D_3$, at $\Delta M_{DP}=125 \, {\rm GeV}$

Second shape due to 3-lepton channel sensitivity due to Higgs decay $D_3 o Z(o \ell\ell)D_1$ to $D_3 \to H(\to W^+W^-)D_1$ with production of $D^\pm(\to \ell\nu D_1)D_3$, at $\Delta M_{DP}=125{\rm GeV}$


MFDM Results



As ΔM_{D3} increases, coupling between D_1-D^\pm increases, while heavy D_3 leads to suppressed production cross-section - 'no-lose' theorem

MFDM Results

ullet With increasing ΔM_{D3} , Higgs to invisible limit covers larger M_{D1}

Mass parameter points

	\rightarrow	-												
M_{D1}	ΔM_{D+}	ΔM_{D2}	$2\ell \ \sigma_A^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \ \sigma_B^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \ \sigma_C^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_A^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_B^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_C^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$
1	5	1	3.26×10^{3}	71	-	100	6.51×10^{4}	71	-	-	1.21×10^{3}	24	-	-
1	10	1	97.0	41	-	100	-	-	-	-	1.21×10^{3}	24	-	100
1	20	1	1.47×10^{3}	58	6.63×10^{3}	71	-	100	-	-	933	21	-	-
1	40	1	1.02×10^{5}	35	8.17×10^{4}	58	8.17×10^4	71	-	-	1.2×10^{3}	8	-	-
1	60	1	8.84×10^{3}	45	$5.3{ imes}10^3$	20	$2.94{\times}10^4$	58	-	-	220	6	-	100
1	80	1	783	11	326	4	$1.15{\times}10^3$	9	-	-	93.0	6	-	-
10	5	1	698	58	$3.14{\times}10^3$	71	-	100	-	-	-	-	-	-
10	10	1	161	38	674	45	-	-	-	-	-	-	-	-
10	20	1	287	45	-	100	1.43×10^{4}	71	-	-	1.87×10^{3}	30	-	100
10	40	1	1.40×10^4	50	$1.29{\times}10^4$	28	2.23×10^{4}	45	-	-	531	5	6.82×10^4	71
10	60	1	4.44×10^{3}	26	507	5	604	7	-	-	165	5	=	-
10	80	1	150	5	248	4	630	7	-	-	80.0	5	-	-
10	120	1	281	6	$1.32{\times}10^3$	8	411	6	-	-	62.0	4	-	-
20	5	1	97.0	41	877	71	-	-	-	-	-	-	-	-
20	10	1	140	35	562	41	-	-	-	-	-	-	-	-
20	20	1	4.78×10^{3}	58	1.08×10^{4}	50	21	_	-	-	9.32×10^{3}	21	-	-
20	40	1	6.31×10^{3}	38	6.02×10^{3}	21	1.76×10^{4}	45	-	-	366	7	=	2
20	60	1	247	6	377	4	438	6	-	-	148	5	-	-
20	80	1	91.0	4	230	3	534	6	_	-	62.0	5	_	-
20	120	1	247	6	$1.50{\times}10^3$	9	321	5	_	100	58.0	4	9.40×10^{3}	58

Cross-section limit (95% cl) for 2 lepton channel of sample A,B,C

M_{D1}	ΔM_{D+}	ΔM_{D2}	$2\ell \ \sigma_A^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \ \sigma_B^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \ \sigma_C^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_A^{95} \ ({\rm fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_B^{95} \ ({\rm fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_C^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$
1	5	1	3.26×10^{3}	71	-	100	6.51×10^{4}	71	-	-	1.21×10^{3}	24	-	-
1	10	1	97.0	41	-	100	-	-	-	-	1.21×10^{3}	24	-	100
1	20	1	1.47×10^{3}	58	6.63×10^{3}	71	-	100	-	-	933	21	-	-
1	40	1	1.02×10^{5}	35	8.17×10^{4}	58	8.17×10^4	71	-	-	1.2×10^{3}	8	-	-
1	60	1	8.84×10^{3}	45	5.3×10^{3}	20	2.94×10^{4}	58	-	-	220	6	-	100
1	80	1	783	11	326	4	1.15×10^{3}	9	-	-	93.0	6	-	-
10	5	1	698	58	3.14×10^{3}	71	-	100	-	-	-	-	-	-
10	10	1	161	38	674	45	-	-	-	-	-	-	-	-
10	20	1	287	45		100	1.43×10^4	71	-	-	1.87×10^{3}	30	-	100
10	40	1	1.40×10^4	50	1.29×10^4	28	2.23×10^4	45	-	-	531	5	6.82×10^4	71
10	60	1	4.44×10^{3}	26	507	5	604	7	-	-	165	5	-	-
10	80	1	150	5	248	4	630	7	-	-	80.0	5	-	-
10	120	1	281	6	1.32×10^{3}	8	411	6	-	-	62.0	4	-	-
20	5	1	97.0	41	877	71	-	-	-	-	-	-	-	-
20	10	1	140	35	562	41	-	-	-	-	-	-	-	-
20	20	1	4.78×10^{3}	58	1.08×10^4	50	-	-	-	-	9.32×10^{3}	21	-	-
20	40	1	6.31×10^{3}	38	6.02×10^{3}	21	1.76×10^4	45	-	-	366	7	-	2
20	60	1	247	6	377	4	438	6	-	-	148	5	_	-
20	80	1	91.0	4	230	3	534	6	-	-	62.0	5	_	-
20	120	1	247	6	1.50×10^{3}	9	321	5	1	100	58.0	4	9.40×10^{3}	58

Cross-section limit (95% cl) for 3 lepton channel of sample A,B,C

									1					
M_{D1}	ΔM_{D+}	ΔM_{D2}	$2\ell \ \sigma_A^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \ \sigma_B^{95} \ ({\rm fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \ \sigma_C^{95} \ ({\rm fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_A^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_B^{95} \ ({\rm fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_C^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$
1	5	1	3.26×10^{3}	71		100	6.51×10^{4}	71	-	-	1.21×10^{3}	24	-	-0
1	10	1	97.0	41	-	100	-	-	-	-	1.21×10^{3}	24	-	100
1	20	1	1.47×10^{3}	58	6.63×10^{3}	71	-	100	-	-	933	21	-	-
1	40	1	1.02×10^{5}	35	8.17×10^{4}	58	8.17×10^4	71	-	-	1.2×10^{3}	8	-	-
1	60	1	8.84×10^{3}	45	5.3×10^{3}	20	$2.94{ imes}10^4$	58	-	-	220	6	-	100
1	80	1	783	11	326	4	1.15×10^{3}	9	-	-	93.0	6	-	-
10	5	1	698	58	3.14×10^{3}	71	-	100	-	-	-	-	-	-
10	10	1	161	38	674	45	-	-	-	-	-	-	-	-
10	20	1	287	45		100	1.43×10^4	71	-	-	1.87×10^{3}	30	-	100
10	40	1	1.40×10^4	50	1.29×10^{4}	28	2.23×10^{4}	45	-	-	531	5	6.82×10^4	71
10	60	1	4.44×10^{3}	26	507	5	604	7	-	-	165	5	-	-
10	80	1	150	5	248	4	630	7	-	-	80.0	5	-	-
10	120	1	281	6	1.32×10^{3}	8	411	6	-	-	62.0	4	-	-
20	5	1	97.0	41	877	71	-	-	-	-	-	-	-	-
20	10	1	140	35	562	41	-	-	-	-	-	-	-	-
20	20	1	4.78×10^{3}	58	1.08×10^{4}	50	-	-	-	-	9.32×10^{3}	21	-	-
20	40	1	6.31×10^{3}	38	6.02×10^{3}	21	1.76×10^{4}	45	-	-	366	7	-	2
20	60	1	247	6	377	4	438	6	-	-	148	5	_	-
20	80	1	91.0	4	230	3	534	6	-	-	62.0	5	_	-
20	120	1	247	6	$1.50{\times}10^3$	9	321	5	_	100	58.0	4	9.40×10^{3}	58

 $\sqrt{\text{Number of Monte Carlo events survived}}$

Gives a percentage uncertainty

									1000			7	10	
M_{D1}	ΔM_{D+}	ΔM_{D2}	$2\ell \ \sigma_A^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \ \sigma_B^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$2\ell \ \sigma_C^{95} \ ({\rm fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_A^{95} \ ({\rm fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_B^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$	$3\ell \ \sigma_C^{95} \ (\text{fb})$	$\frac{100}{\sqrt{N_{MC}}}$
1	5	1	3.26×10^{3}	71	-	100	6.51×10^4	71	-	-	1.21×10^{3}	24	-	-
1	10	1	97.0	41	-	100	-	-	-	-	1.21×10^{3}	24	-	100
1	20	1	1.47×10^{3}	58	6.63×10^{3}	71	-	100	-	-	933	21	-	-
1	40	1	1.02×10^{5}	35	8.17×10^{4}	58	8.17×10^4	71	-	-	1.2×10^{3}	8	-	-
1	60	1	8.84×10^{3}	45	$5.3{\times}10^3$	20	2.94×10^{4}	58	-	-	220	6	-	100
1	80	1	783	11	326	4	1.15×10^{3}	9	-	-	93.0	6	-	-
10	5	1	698	58	$3.14{\times}10^3$	71	-	100	-	-	-	-	-	-
10	10	1	161	38	674	45	-	-	-	-	-	-	-	-
10	20	1	287	45	-	100	1.43×10^4	71	-	-	1.87×10^{3}	30	-	100
10	40	1	1.40×10^4	50	1.29×10^{4}	28	2.23×10^{4}	45	-	-	531	5	6.82×10^4	71
10	60	1	4.44×10^{3}	26	507	5	604	7	-	-	165	5	-	-
10	80	1	150	5	248	4	630	7	-	-	80.0	5	-	-
10	120	1	281	6	$1.32{\times}10^3$	8	411	6	-	-	62.0	4	-	-
20	5	1	97.0	41	877	71	-	-	-	-	-	-	-	-
20	10	1	140	35	562	41	-	-	-	-	-	-	-	-
20	20	1	4.78×10^{3}	58	1.08×10^{4}	50	_	-	-	-	9.32×10^{3}	21	-	-
20	40	1	6.31×10^{3}	38	6.02×10^{3}	21	1.76×10^{4}	45	-	-	366	7	-	2
20	60	1	247	6	377	4	438	6	-	-	148	5	-	-
20	80	1	91.0	4	230	3	534	6	-	-	62.0	5	-	-
20	120	1	247	6	$1.50{\times}10^3$	9	321	5	-	100	58.0	4	9.40×10^{3}	58

Conclusions

- Validated previous 8 TeV results from MadAnalysis, in CheckMATE
- New 13 TeV limits on DM mass splittings, beyond mono-jet for:
 - I2HDM: Important contributions from 3-lepton final states
 - \circ MFDM: 3-lepton channel becomes leading role via $D_3 \to Z(\to \ell\ell)D_1$ and Higgs becomes important for $D_3 \to H(\to W^+W^-)D_1$
- Map of 2&3 lepton channel cross-section limits and efficiencies using CheckMATE for a wider DM re-interpretation analysis for our community