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The Gaerttner LINAC Center

Outline

• Gaerttner LINAC center overview

• Thermal cross section measurements (Dominik Frits)

• 54Fe Resonance region measurements and evaluation (Sukhjinder Singh)

• Capture γ-spectra measurements (Katelyn Cook)
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The Gaerttner LINAC Center

Motivation

• Driven by 60 MeV electron LINAC

• The RPI Nuclear Data research group is dedicated to development and 

execution of novel and accurate nuclear data measurements for the 

improvement of data used in applications

– Mostly related to nuclear reactor design and analysis, and criticality safety

– Mostly neutron induced reactions

• There are other research areas that utilize the same accelerator
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The Gaerttner LINAC Center

Where is the RPI Gaerttner LINAC Center?

It is on the highest point in Troy, NY

LINAC

Flight 

Stations

NES

Offices

RPI Campus
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The Gaerttner LINAC Center
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The Gaerttner LINAC Center

Current LINAC Specifications

Three Sections

(Low Energy Port)

Nine Sections

(High Energy Port)

Electron Energy 5 to 25 MeV 25 to over 60 MeV

Pulse Width 6 to 5000 ns 6 to 5000 ns

Peak Current
3A (short pulse: 6 to 50 ns)

400 mA (long pulse: 50 to 5000 ns)

3A (short pulse: 6 to 50 ns)

400 mA (long pulse: 50 to 5000 ns)

Average Power 10 kw@ 17 MeV, 5000 ns >10 kw@ 60 MeV, 5000 ns

Peak Dose Rate >1011 Rads/sec (in Silicon) n/a

Neutron

Production
n/a ~4 X 1013 neutrons/sec

Pulse

Repetition Rate

Single pulse to 500 pps (short pulse)

Single pulse to 300 pps (long pulse)

Single pulse to 500 pps (short pulse)

Single pulse to 300 pps (long pulse)
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The Gaerttner LINAC Center

RPI LINAC History

December 1961 - The RPI LINAC started operation

Working “continuously” since. 

Graduated over 190 students who utilized the LINAC 

as part of their graduate thesis research

Many years of accumulated experience

September 1997- LINAC was designated as Nuclear 

Historic Landmark by the American Nuclear Society

2014 - Started a major refurbishment and upgrade project
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The Gaerttner LINAC Center

Neutron Production Targets 

(electrons → neutrons)

Enhanced Thermal Target (ETT)

Bare Bounce Target (BBT)

PACMAN target
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The Gaerttner LINAC Center

Detector Systems

Transmission

Capture/Multiplicity

Fast Scattering  

and PFNS @ 30m

250m

keV Scattering @ 35m

Neutron Scattering
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The Gaerttner LINAC Center

Capability Matrix and Development
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PAC
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Transmission
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250m EJ301 
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RPI LINAC - Nuclear Data Measurement Capabilities 2023

BBT/PAC/BBT
ETT/C

n-Production Targets

ETT- Enhanced Thermal Target PAC - PacMan Target

ETTC - ETT + cold moderator PN - Photoneutron target 

BBT - Bare Bounce Target BT- Bare Target on Axis
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Photoneutons
EJ301 ArrayPN
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The Gaerttner LINAC Center

THERMAL 

CROSS SECTION 

MEASURMENTS
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The Gaerttner LINAC Center

Primary Project Objectives

• Many materials lack high quality total 
cross section measurements in the 0.5 
meV – 1 eV region required for validation 
of thermal scattering library/law (TSL) 
evaluations.
– Examples: polystyrene, Lucite, and yttrium 

hydride 

• Evaluations in this region need validation 
as thermal scattering can dramatically 
alter the neutron multiplication factor of a 
system.

Polyethylene Total Cross Section
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The Gaerttner LINAC Center

New Cold Neutron Add On

Front View

(detector view)

Side View
Cryostat rolls 

into place

• Cold moderator is attached to 

cart that easily rolls in front of 

ETT target. This is the ETTC 

configuration.

• Once stable temperature, the 

vacuum pump is removed, and 

a helium flight tube is rolled 

into place.
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The Gaerttner LINAC Center

Neutron Intensity Improvement

• Below 0.02 eV, ETTC produces gain up to 8 over ETT after background subtraction. 

Pb Bragg 

Edges

W resonances from 

in-beam notch

Pb Bragg 

Edges

Power Normalized Measured 

Flux Spectra For ETT & ETTC ETTC/ETT Neutron Flux Gain
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The Gaerttner LINAC Center

Polyethylene total cross section

• Excellent agreement between ETT and 

ETTC cross section for polyethylene (PE).

• Serves to validate ETTC system and 

measurement methodology.

• Good agreement between all RPI measured 

cross sections, other measured cross 

sections, and TSL evaluation.

• Experimental error bars account for all 

experimental sources of uncertainty and 

were calculated via a covariance matrix.
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The Gaerttner LINAC Center

Polyethylene: averaged total cross section

• Weighted average of all polyethylene measurements performed

• In general, the ORNL/ESS/RPI TSL evaluation agrees with the measured cross section better than the ENDF/B-VIII.0 TSL evaluation.
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The Gaerttner LINAC Center

Polystyrene total cross section

• Good agreement between measured cross section and preliminary ORNL/RPI evaluation.
D. Fritz, Y. Danon, K. Ramic, C. W. Chapman, J. M. Brown, G. Arbanas, M. Rapp, T. H. Trumbull, M. Zerkle, J. Holmes, P. Brain, A. Ney, S. Singh, K. Cook and B. 
Wang, “Total thermal neutron cross section measurements of hydrogen dense polymers from 0.0005–20 eV”, Annals of Nuclear Energy, vol. 183, pp. 
109651, 2023, DOI:10.1016/j.anucene.2022.109651
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The Gaerttner LINAC Center

Plexiglas total cross section

• Divergence in cross section between 

Plexiglas G and Plexiglas G-UVT occurs 

below 0.02 eV due to presence of 

Octadecanoic acid in Plexiglas G.

• Existing experimental data and ORNL/RPI 

TSL evaluation agrees with Plexiglas G

• ENDF/B-VIII.0 TSL evaluation begins to 

diverge from Plexiglas G cross section 

below 0.02 eV.

Divergence In 

Cross Section
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The Gaerttner LINAC Center

Yttrium Hydride total cross section

• Generally good agreement with existing experimental data and TSL evaluations.

• Measured cross section extended above 0.8 eV and below 0.05 eV.
D. Fritz, Y. Danon, M. Rapp, T. H. Trumbull, M. Zerkle, J. Holmes, C. W. Chapman, G. Arbanas, J. M. Brown, K. Ramic, X. Hu, S. Singh, A. Ney, P. Brain, K. Cook and B. 
Wang, “Total thermal neutron cross section measurements of yttrium hydride from 0.0005 - 3 eV”, Annals of Nuclear Energy, vol. 181, pp. 109475, 
2023, DOI:10.1016/j.anucene.2022.109475
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The Gaerttner LINAC Center

Yttrium Hydride – Closer Look

• Misalignment of Bragg edges between experiment 

and yttrium TSL evaluations.

• Discrepancy in inelastic scattering cross section 

below last Bragg edge.

• Misalignment of oscillations between experiment and 

hydrogen TSL evaluations. 
• Impact of anharmonic behavior and impurities in YHx on 

neutron scattering not fully understood.

Inelastic Scattering 

Cross Section

Bragg Edges
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The Gaerttner LINAC Center

54Fe CROSS SECTION 

MEASUREMENTS
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The Gaerttner LINAC Center

54Fe (n, γ) Measurement - Motivation

• Fe is important in many nuclear systems and has applications in reactors, shielding, and stellar nucleosynthesis

• Natural Fe and 56Fe cross sections have been studied extensively, but there is a lack of data available in EXFOR of the 54Fe(n, 𝛾) 

cross section

• There are various discrepancies between different evaluated data libraries, where some resonances are present in one evaluation 

and not the other.

• Accurate knowledge of the cross sections of minor isotopes becomes very important in the 56Fe cross section minima.
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The Gaerttner LINAC Center

Overview of C6D6 Capture Array

• An array of seven C6D6 liquid scintillators surrounding the 

sample of interest at a flight path of 45m

• The system is designed to perform radiative capture in the 

keV – low MeV energy range

• All the detector structural materials have a low capture cross 

section to minimize neutron sensitivity

– Materials are mostly thin Al

• System is based on the principle of the total energy method

– Pulse weighting is required
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The Gaerttner LINAC Center

54Fe Capture Measurement Overview

• Capture data were taken of a ~0.021 [a/b] 96% 
enriched 54Fe sample.

• 2.5 mm thick, 2” diameter. 

• Separate experiment conducted for normalization of 

capture yield

– Au, Ta samples used to calculate absolute 

normalization factors using saturated resonance 

method

• Resonance structure is clearly observed in the raw 
54Fe data.

• Pulse height weighting technique (PHWT) is utilized 

when processing raw data.

– Higher energy photon events are weighted more 

heavily to achieve proportionality of photon energy 

and detection efficiency.

weighted
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The Gaerttner LINAC Center

54Fe Radiative Capture – Results

• RPI capture yield disagrees with evaluations at 
prominent capture resonances.

• Some missing resonances from JEFF3.3 can be 
seen in RPI experiment.

• Capture data were normalized to black 
resonance of Au.

• Energy resolution is limited at higher neutron 
energies.

• Covariance matrix generation is planned 
before data is released (currently underway).



26

The Gaerttner LINAC Center

54Fe Capture Data Evaluation
• n_TOF and RPI experiments can be fit 

simultaneously and agree with one another.

• n_TOF data available in EXFOR needs additional 

normalization to obtain absolute capture yield

• Observation: Some p,d-wave resonances will 

require large changes in Γ𝛾

• Work Needed: Extend evaluation up to 1 MeV w/ 

consideration of data covariances when available.
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The Gaerttner LINAC Center

Transmission Experiment Overview

• To improve the fitting of the 
54Fe capture data, a transmission 

measurement to obtain total 

cross section data was conducted

• A Li-Glass detector at 35m was 

used to collect data, sample 

placed at 15m flight path

• 2cm of natural Fe, 625 mil of 

depleted Uranium, 0.25 cm of 
54Fe all measured during 

experiment

• Black resonances used to determine 

background shape for each sample

Constant Room 

Background

127 eV Co

5 keV Al

7.8 keV 54Fe 35 keV Al

86 keV Al
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The Gaerttner LINAC Center

Transmission Experiment Results

• Experiment is most useful below 30 keV, 

where there is very limited previous data 

available

• Data between 30-150 keV can be used to 

support higher energy resolution 

measurements

• Limited energy resolution above 150 keV

• RPI’s approach of combining capture and 

transmission data will improve resonance 

evaluation effort for 54Fe.

• Covariance matrix has been generated for this 

experiment.
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The Gaerttner LINAC Center

Transmission Experiment Covariance

• Covariance matrix has been 

generated for transmission 

experiment.

• Data are not heavily correlated.

• Covariance passes mathematical 

checks

– Positive definite, eigenvalues all 

positive, covariance matrix is 

invertible

• Covariance has been converted into 

implicit format for use in 

evaluation w/ SAMMY.
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The Gaerttner LINAC Center

THERMAL NEUTRON 

CAPTURE γ-SPECTRA 

MEASUREMENTS
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The Gaerttner LINAC Center

Capture γ-Spectra Measurements: Motivation & Goals

• Test accuracy of capture data evaluations

• Measure capture (and fission) γ-emission spectra as a function of 

energy and multiplicity of important nuclear materials in the RRR
– Interest includes 235U and 238U

• Generate detailed capture (and fission) γ-cascade data from 

experimental results
– Compare with current simulation tools

– Constrain models used for reaction and cascade calculations

• Improve the current models used to simulate γ-emission spectra 

following neutron capture
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The Gaerttner LINAC Center

RPI γ-Multiplicity Detector

• 16 segment NaI(Tl) γ-multiplicity detector

– Total volume: 20 L of NaI(Tl) surrounding the sample

– Inside the detector is lined (~1 cm) with a B4C ceramic sleeve which is enriched 99.5 atom% in 10B to 

absorb scattered neutrons from the sample

– Up to 96% efficiency for detecting γ-cascades

• Detector is used for capture yield and γ-spectra measurements 

– Useful neutron energy range: 0.01 eV – 3 keV

• New SIS3316-DT 16 Channel Digitizer

– Digitize pulse wave for all events on all detectors & obtain the energy of each detected event
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The Gaerttner LINAC Center

Experimental Validation
Low Energy Capture Yield of natTa and natU

• Sample thicknesses:

– 10 mil natTa (0.012% 180mTa)

– 20 mil natU (0.7% 235U)

• Useful energy range:  0.01 – 100 eV

• Validation of the new DAQ system 

and processing codes ( based)

• First-order calculated capture yield is 

shown for evaluations

180mTa resonances: 0.2, 0.435, 2.06, 5.93 eV

181Ta resonances: 4.28, 10.34, 13.95 eV
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The Gaerttner LINAC Center

• Current tools for modeling show a large 

discrepancy between experimental and 

simulated γ-spectra for 181Ta(n,γ)  

• MCNP-6.2

– Extracts γ-ray data from ACE files (ENDF/B-VIII.0)

• MCNP-6.2 with CGM

– Cascading Gamma-Ray Multiplicity 

– Produces correlated secondary γ-emissions

– Has some issues

• Need a better way to feed g-cascades to MCNP

natTa(n,γ) spectra

Comparing Experimental γ-Spectra to MCNP Simulations
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The Gaerttner LINAC Center

Comparing Experimental γ-Spectra to MCNP-6.2 Simulations

Step 1: γ-cascades are generated using an external code 

(i.e., DICEBOX) and are written to a file

Step 2: Run modified MCNP-6.2, for each capture event:

1. Read in γ-cascade from file 

2. Transport γ-cascade through the detector geometry

3. Output an event file to tally γ-energy deposition in detector cells

Step 3: Process the output file using event-by-event analysis 

including coincidence and compare to experimental data
n

(n,γ)

Number of γ-rays 

in cascade

Energy of each γ-ray 

in cascade



36

The Gaerttner LINAC Center

MCNP-6.2/DICEBOX Simulation Validation 

Test Cases: 22Na & 60Co coincidence γ-sources

MCNP-6.2/DICEBOX accounts for the high energy sum peak in single detectors resulting from coincidence
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The Gaerttner LINAC Center

Comparing 56Fe DICEBOX Capture γ-Cascades to EGAF

• To measure capture γ-spectra accurately, the 

detector system needs to be benchmarked by 

isotopes with well-known γ-ray data (like 56Fe)

• DICEBOX

– Models full γ-cascades using evaluated nuclear data

• EGAF
– Shows experimentally measured γ-ray lines

(does not represent the full spectrum)

Sn = 7.646 MeV
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The Gaerttner LINAC Center

56Fe(n,γ) spectra compared to MCNP-6.2/DICEBOX Simulation

• Minor discrepancies 

between experimental and 

simulated γ-spectra for 
56Fe(n,γ) 

• Conclusion: experimental 

γ-spectra agree with 
DICEBOX + MCNP-6.2 

calculations for isotopes 

with well-known γ-ray data



39

The Gaerttner LINAC Center

Challenges: Deficiencies in evaluated γ-ray data
181Ta(n,γ) spectra compared to MCNP-6.2/DICEBOX Simulation

Sn = 6.063 MeV

Discrepancy between experimental and simulated γ-spectra 
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The Gaerttner LINAC Center

Capture γ-Spectra Measurements: Conclusions

• Experimental, simulation and nuclear data methods were validated for the RPI γ-Multiplicity Detector

• When neutron capture γ-cascade data is well-known, the γ-emission spectra can be accurately calculated 

using the MCNP-6.2/DICEBOX simulation method.

• RPI γ-Multiplicity Detector system is now ready for analysis and recommendations for isotopes with 

deficiencies in γ-ray data (like 181Ta)

Future Work
• Develop a method for analyzing and adjusting nuclear 

data for 59Co, 55Mn and other measured isotopes 

including 181Ta

• Compare experimental γ-emission spectra with  
MCNP-6.2/DICEBOX simulations for 238U and 235U

– Most interesting for reactor applications, most difficult 

to measure and simulate (due to the fission contribution)

Comparing 235U DICEBOX Capture γ-Cascades to EGAF
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The Gaerttner LINAC Center

Conclusions

• Thermal measurements

– Constructed  the Enhanced Thermal Target + Cold Moderator (ETTC).

• Net neutron flux improved by up to a factor of 8 below 0.02 eV.

– 14 new total cross section measurements and covariances submitted to EXFOR for various moderator 

materials over the entire thermal energy region (polyethylene, polystyrene, Plexiglas, yttrium hydride).

– Published 3 journal articles, 2 conference papers, and a PhD thesis.

• Fe-54 capture

– Completed capture measurements for Fe-54 at 45m flight path

– Completed transmission measurements of Fe-54 sample at 35m flight path

– Evaluation of Fe-54 resonance parameters in progress 

• Capture g-cascade measurements

– Upgraded data acquisition system to Digitizers

– Perfumed measurements on several samples including Ta, Fe-56, U-235, U-238

– Developed methodology to simulate capture gamma cascade and transport them with MCNP

– Comparison of experiments with simulation validates capture gamma evaluations and identifies deficiencies.
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The Gaerttner LINAC Center
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