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Motivation

1. Photonuclear data are important in application to radiation damage, reactor
dosimetry, accelerator shielding, radiation therapy and so on; and recently, the
requirements of the high-quality data for more nuclei are increasing from users;

2. The progress of many advanced microscopic nuclear theories could be helpful to
obtain a PSF reference database for thousands of nuclei in the nuclide chart and
derive reasonable prediction for photoabsorption cross sections et al. consistently;
and the new measurements with improved experimental techniques will be good
criteria to test them.

3. New measurements in high precision since 1999 are available to make it possible to
update the previous recommended photonuclear data and evaluate data for more
nuclei and reactions. Shanghai Laser Electron Gamma Source (SLEGS) has officially
completed in 2022. The relevant evaluation techniques and codes at CNDC have be
improved
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Status of photonuclear reaction data
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Problem1: PSF divergence at Eg<Sn
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Problem2：Discrepancies in (g,xn) c.s
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Evaluation process of Photonuclear reaction data in CNDC
Standard Lorentzian (SLO) Brink(1955)& Axel(1962)

Enhanced Generalized Lorentzian (EGLO) Kopecky& Uhl(1993)

Hybrid model (GH) Goriely (1998)

Modified Lorentzian model (MLO) Plujko et al (1999)

Generalized Fermi liquid model (GFL) Mughabghab&Dunford (2000)

Triple (triaxial) Lorentzian model (TL) Junghans et al (2008) 

Simplex Modified Lorentzian Model (SMLO) Plujko et al (2008)

Semi-classical thermodynamic approach

Hartree-Fock ground state (QRPA)

Relativistic mean field ground state (RQRPA)

Theory of finite fermi systems
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1. RIPL-3 recommend GDR parameters
2. CNDC GDR parameters
3. Results comparison

RIPL: Reference Input Parameter Lib... NUCLEAR DATA SHEETS R. Capote et al.

Note that the QRPA method does not use a thermody-
namic description of the ensemble of initial highly-excited
states. A rather simple semi-classical approach was pro-
posed in Refs. [347, 348]. This method is based on solv-
ing the kinetic Landau-Vlasov equation for finite systems
with a moving surface [351] (semi-classical approach with
moving surface, MSA). Calculations of the E1 RSF using
the MSA model for medium and heavy atomic nuclei are
in rather close agreement with QRPA predictions [314].

D. Giant dipole resonance parameters

The parameters for giant resonances with E1, M1
and E2 multipolarities were collected in RIPL-1 [6],
and also presented in RIPL-3 [14]. A compilation of
experimental giant dipole resonance parameters from
fits to the total photoneutron cross-section data by
the SLO expression (reformatted from the RIPL-1
database [6]) is contained in the RIPL-3 gamma/gdr-
parameters-exp.dat file. New compilations of experimen-
tal giant dipole resonance parameters and their uncer-
tainties from fits to an extended database of photore-
action cross sections by the SLO and MLO1 expres-
sions are given in files gamma/gdr-parameters&errors-
exp-SLO.dat and gamma/gdr-parameters&errors-exp-
MLO.dat. A database of the photonuclear reaction pa-
rameters Er,j , σr,j can also be found in Atlas of Giant
Dipole Resonances [352]. This database does not contain
explicit information on the damping width components
Γr,j in deformed nuclei, but provides only full-width at
half-maximum data for the largest peaks in the photo-
nuclear cross sections.

Unknown GDR parameters can be estimated from var-
ious systematics, which are most reliable for nuclei close
to the beta-stability line with A ≥ 40. The global system-
atics for dipole isovector giant resonance parameters are
usually adopted from the interpolation of experimental
data based on some theoretical description of the GDR.
The simplest systematics approach for spherical nuclei is
as follows (see also Refs. [287, 353, 354]):

Er ≡ E0 = aA−1/3 + bA−1/6 MeV,

Γr = cEδ
r MeV, (173)

Sr ≡
π

2
σrΓr = 60 d NZ/A mb·MeV,

where Sr within the SLO model is the total energy-
integrated cross section for electric-dipole photon absorp-
tion.

Analysis of the photoneutron cross-section data for
heavy atomic nuclei within the SLO model shows that
a = 31.2, b = 20.6, d = 1.05 ± 0.07 ([287]) and
c = 0.026± 0.005, δ = 1.9 ± 0.1 ([353]).

A new fit to the RIPL-3 experimental database (using
a fixed value of δ = 1.9 in Eq. (173)) leads to the following
values of the parameters [355, 356]:

SLO :

a = 27.47± 0.01, b = 22.063± 0.004, (174)

c = 0.0277± 0.4 · 10−4, d = 1.222 ± 0.002 ;

MLO :

a = 28.69± 0.01, b = 21.731± 0.004, (175)

c = 2 58 ± 0.4 · 10−4, d = 1.267 ± 0.002.

The value of d = 1 in the expression for Sr of Eqs. (173)
corresponds to the classical dipole Thomas-Reiche-Kuhn
sum rule Sr ≡ STRK . The quantity d − 1 is the
enhancement factor due to the exchange and velocity
dependent components of the nucleon-nucleon interac-
tions [357, 358]; d − 1 ≈ 0.2 − 0.3 is in agreement with
theoretical indications [354, 357, 358].

The systematics approach for deformed nuclei
(spheroidal approximation) is as follows:

Er,1 = Er,2/

[
0.911

a0

b0
+ 0.089

]
,

Er,2 = E0
1

b0

[
1 − 1.51 · 10−2(a2

0 − b2
0)

]
,

Γr,1 = 0.026E1.91
r,1 , Γr,2 = 0.026E1.91

r,2 ,

σr,1 = σ0/3, σr,2 = 2σ0/3, (176)

where indexes 1 and 2 correspond respectively to the col-
lective motion along and perpendicular to the axis of
symmetry with relative semi-axes of a spheroid a0 =
(1 + α2) /λ, b0 = (1 − 0.5α2) /λ (see Eqs. (167) and
(170)), and σ0 is calculated using Eq. (173): σr ≡
2Sr/(Γrπ).

The energy expressions in Eqs. (176) were derived
from the hydrodynamic model of Steinwedel-Jensen [359]
(see Fig. 2 and Eq. (9) in this reference), and Er,1 %
E0/(1+α2) and Er,2 % E0/(1−0.5α2) for small deforma-
tions, as reported in RIPL-1 [6] (β2 was used in RIPL-1
instead of α2). Effective quadrupole deformation param-
eters α2 or β2 of the equivalent spheroid (Eq. (167)) were
determined from the ground-state deformation param-
eters βn ≡ αn/

√
(2n + 1)/4π, with the nuclear radius

expansion expressed in spherical harmonics. βn param-
eters were calculated in Ref. [16] and are listed in the
masses/mass-frdm95.dat file. The nuclear quadrupole
moment Q

′

was calculated in units of (3/4π)ZeR2
0 for

every nucleus by the equation (see also Eqs. (1.22) and
(6.19) in Ref. [360]):

Q
′
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where ᾱn ≡ βn

√
(2n + 1)/4π, with the ground-state

deformation parameters βn taken from Ref. [16]. The
quadrupole deformation α2 of an effective spheroidal nu-
cleus was subsequently determined from the calculated
quadrupole moment Q

′

by solving the equation
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Note that the QRPA method does not use a thermody-
namic description of the ensemble of initial highly-excited
states. A rather simple semi-classical approach was pro-
posed in Refs. [347, 348]. This method is based on solv-
ing the kinetic Landau-Vlasov equation for finite systems
with a moving surface [351] (semi-classical approach with
moving surface, MSA). Calculations of the E1 RSF using
the MSA model for medium and heavy atomic nuclei are
in rather close agreement with QRPA predictions [314].

D. Giant dipole resonance parameters

The parameters for giant resonances with E1, M1
and E2 multipolarities were collected in RIPL-1 [6],
and also presented in RIPL-3 [14]. A compilation of
experimental giant dipole resonance parameters from
fits to the total photoneutron cross-section data by
the SLO expression (reformatted from the RIPL-1
database [6]) is contained in the RIPL-3 gamma/gdr-
parameters-exp.dat file. New compilations of experimen-
tal giant dipole resonance parameters and their uncer-
tainties from fits to an extended database of photore-
action cross sections by the SLO and MLO1 expres-
sions are given in files gamma/gdr-parameters&errors-
exp-SLO.dat and gamma/gdr-parameters&errors-exp-
MLO.dat. A database of the photonuclear reaction pa-
rameters Er,j , σr,j can also be found in Atlas of Giant
Dipole Resonances [352]. This database does not contain
explicit information on the damping width components
Γr,j in deformed nuclei, but provides only full-width at
half-maximum data for the largest peaks in the photo-
nuclear cross sections.

Unknown GDR parameters can be estimated from var-
ious systematics, which are most reliable for nuclei close
to the beta-stability line with A ≥ 40. The global system-
atics for dipole isovector giant resonance parameters are
usually adopted from the interpolation of experimental
data based on some theoretical description of the GDR.
The simplest systematics approach for spherical nuclei is
as follows (see also Refs. [287, 353, 354]):

Er ≡ E0 = aA−1/3 + bA−1/6 MeV,

Γr = cEδ
r MeV, (173)

Sr ≡
π

2
σrΓr = 60 d NZ/A mb·MeV,

where Sr within the SLO model is the total energy-
integrated cross section for electric-dipole photon absorp-
tion.

Analysis of the photoneutron cross-section data for
heavy atomic nuclei within the SLO model shows that
a = 31.2, b = 20.6, d = 1.05 ± 0.07 ([287]) and
c = 0.026± 0.005, δ = 1.9 ± 0.1 ([353]).

A new fit to the RIPL-3 experimental database (using
a fixed value of δ = 1.9 in Eq. (173)) leads to the following
values of the parameters [355, 356]:

SLO :

a = 27.47± 0.01, b = 22.063± 0.004, (174)

c = 0.0277± 0.4 · 10−4, d = 1.222 ± 0.002 ;

MLO :

a = 28.69± 0.01, b = 21.731± 0.004, (175)

c = 2 58 ± 0.4 · 10−4, d = 1.267 ± 0.002.

The value of d = 1 in the expression for Sr of Eqs. (173)
corresponds to the classical dipole Thomas-Reiche-Kuhn
sum rule Sr ≡ STRK . The quantity d − 1 is the
enhancement factor due to the exchange and velocity
dependent components of the nucleon-nucleon interac-
tions [357, 358]; d − 1 ≈ 0.2 − 0.3 is in agreement with
theoretical indications [354, 357, 358].

The systematics approach for deformed nuclei
(spheroidal approximation) is as follows:

Er,1 = Er,2/

[
0.911

a0

b0
+ 0.089

]
,
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,
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where indexes 1 and 2 correspond respectively to the col-
lective motion along and perpendicular to the axis of
symmetry with relative semi-axes of a spheroid a0 =
(1 + α2) /λ, b0 = (1 − 0.5α2) /λ (see Eqs. (167) and
(170)), and σ0 is calculated using Eq. (173): σr ≡
2Sr/(Γrπ).

The energy expressions in Eqs. (176) were derived
from the hydrodynamic model of Steinwedel-Jensen [359]
(see Fig. 2 and Eq. (9) in this reference), and Er,1 %
E0/(1+α2) and Er,2 % E0/(1−0.5α2) for small deforma-
tions, as reported in RIPL-1 [6] (β2 was used in RIPL-1
instead of α2). Effective quadrupole deformation param-
eters α2 or β2 of the equivalent spheroid (Eq. (167)) were
determined from the ground-state deformation param-
eters βn ≡ αn/

√
(2n + 1)/4π, with the nuclear radius

expansion expressed in spherical harmonics. βn param-
eters were calculated in Ref. [16] and are listed in the
masses/mass-frdm95.dat file. The nuclear quadrupole
moment Q
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was calculated in units of (3/4π)ZeR2
0 for

every nucleus by the equation (see also Eqs. (1.22) and
(6.19) in Ref. [360]):
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where ᾱn ≡ βn

√
(2n + 1)/4π, with the ground-state

deformation parameters βn taken from Ref. [16]. The
quadrupole deformation α2 of an effective spheroidal nu-
cleus was subsequently determined from the calculated
quadrupole moment Q
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by solving the equation
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Note that the QRPA method does not use a thermody-
namic description of the ensemble of initial highly-excited
states. A rather simple semi-classical approach was pro-
posed in Refs. [347, 348]. This method is based on solv-
ing the kinetic Landau-Vlasov equation for finite systems
with a moving surface [351] (semi-classical approach with
moving surface, MSA). Calculations of the E1 RSF using
the MSA model for medium and heavy atomic nuclei are
in rather close agreement with QRPA predictions [314].

D. Giant dipole resonance parameters

The parameters for giant resonances with E1, M1
and E2 multipolarities were collected in RIPL-1 [6],
and also presented in RIPL-3 [14]. A compilation of
experimental giant dipole resonance parameters from
fits to the total photoneutron cross-section data by
the SLO expression (reformatted from the RIPL-1
database [6]) is contained in the RIPL-3 gamma/gdr-
parameters-exp.dat file. New compilations of experimen-
tal giant dipole resonance parameters and their uncer-
tainties from fits to an extended database of photore-
action cross sections by the SLO and MLO1 expres-
sions are given in files gamma/gdr-parameters&errors-
exp-SLO.dat and gamma/gdr-parameters&errors-exp-
MLO.dat. A database of the photonuclear reaction pa-
rameters Er,j , σr,j can also be found in Atlas of Giant
Dipole Resonances [352]. This database does not contain
explicit information on the damping width components
Γr,j in deformed nuclei, but provides only full-width at
half-maximum data for the largest peaks in the photo-
nuclear cross sections.

Unknown GDR parameters can be estimated from var-
ious systematics, which are most reliable for nuclei close
to the beta-stability line with A ≥ 40. The global system-
atics for dipole isovector giant resonance parameters are
usually adopted from the interpolation of experimental
data based on some theoretical description of the GDR.
The simplest systematics approach for spherical nuclei is
as follows (see also Refs. [287, 353, 354]):

Er ≡ E0 = aA−1/3 + bA−1/6 MeV,

Γr = cEδ
r MeV, (173)

Sr ≡
π

2
σrΓr = 60 d NZ/A mb·MeV,

where Sr within the SLO model is the total energy-
integrated cross section for electric-dipole photon absorp-
tion.

Analysis of the photoneutron cross-section data for
heavy atomic nuclei within the SLO model shows that
a = 31.2, b = 20.6, d = 1.05 ± 0.07 ([287]) and
c = 0.026± 0.005, δ = 1.9 ± 0.1 ([353]).

A new fit to the RIPL-3 experimental database (using
a fixed value of δ = 1.9 in Eq. (173)) leads to the following
values of the parameters [355, 356]:

SLO :

a = 27.47± 0.01, b = 22.063± 0.004, (174)

c = 0.0277± 0.4 · 10−4, d = 1.222 ± 0.002 ;

MLO :

a = 28.69± 0.01, b = 21.731± 0.004, (175)

c = 2 58 ± 0.4 · 10−4, d = 1.267 ± 0.002.

The value of d = 1 in the expression for Sr of Eqs. (173)
corresponds to the classical dipole Thomas-Reiche-Kuhn
sum rule Sr ≡ STRK . The quantity d − 1 is the
enhancement factor due to the exchange and velocity
dependent components of the nucleon-nucleon interac-
tions [357, 358]; d − 1 ≈ 0.2 − 0.3 is in agreement with
theoretical indications [354, 357, 358].

The systematics approach for deformed nuclei
(spheroidal approximation) is as follows:

Er,1 = Er,2/

[
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where indexes 1 and 2 correspond respectively to the col-
lective motion along and perpendicular to the axis of
symmetry with relative semi-axes of a spheroid a0 =
(1 + α2) /λ, b0 = (1 − 0.5α2) /λ (see Eqs. (167) and
(170)), and σ0 is calculated using Eq. (173): σr ≡
2Sr/(Γrπ).

The energy expressions in Eqs. (176) were derived
from the hydrodynamic model of Steinwedel-Jensen [359]
(see Fig. 2 and Eq. (9) in this reference), and Er,1 %
E0/(1+α2) and Er,2 % E0/(1−0.5α2) for small deforma-
tions, as reported in RIPL-1 [6] (β2 was used in RIPL-1
instead of α2). Effective quadrupole deformation param-
eters α2 or β2 of the equivalent spheroid (Eq. (167)) were
determined from the ground-state deformation param-
eters βn ≡ αn/

√
(2n + 1)/4π, with the nuclear radius

expansion expressed in spherical harmonics. βn param-
eters were calculated in Ref. [16] and are listed in the
masses/mass-frdm95.dat file. The nuclear quadrupole
moment Q

′

was calculated in units of (3/4π)ZeR2
0 for

every nucleus by the equation (see also Eqs. (1.22) and
(6.19) in Ref. [360]):
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= ᾱ2 +
4

7
ᾱ2
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where ᾱn ≡ βn

√
(2n + 1)/4π, with the ground-state

deformation parameters βn taken from Ref. [16]. The
quadrupole deformation α2 of an effective spheroidal nu-
cleus was subsequently determined from the calculated
quadrupole moment Q
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by solving the equation
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FIG. 45: Comparison of experimental data in the RIPL-3
gamma/gdr-parameters&errors-exp-SLO.dat with GDR ener-
gies and widths given in the gamma/gdr-parameters-theor.dat
file.

terization of R is given by [10]:

R =

←−
f E1(Bn)
←−
f M1(Bn)

= 0.0588 ·A0.878, Bn ≈ 7 MeV. (189)

Two models are commonly used for the function φM1:

(1) φM1(εγ) = const as defined in the single-particle
model [372]; and

(2) φM1(εγ) which corresponds to the spin-flip giant
resonance mode [304, 373, 374] from the SLO model
(Eq. (135)), with global parameterization for the
energy and damping width of [10]:
Er = 41 · A−1/3 MeV and Γr = 4 MeV.

E2 radiation is linked to the excitation of the giant
quadrupole iso-scalar resonances, and a Lorentzian is rec-
ommended to describe the E2 strength [10]. The single-
particle model with energy-independent strengths is rec-
ommended for the M2, E3 and M3 radiations [372].

F. Recommendations

Numerical studies indicate that the calculations of the
γ-decay strength functions within the EGLO, GFL and

MLO models give similar results at low γ-ray energies
(εγ ≤ 3 MeV). These three models describe the exper-
imental data much better than the SLO model at low
energies, and also define a non-zero and temperature-
dependent limit for the vanishing γ-ray energy. Results
from the GFL, MLO and SLO models at εγ ≥ 5 MeV
are closer to the experimental data than those obtained
from EGLO. The E1 photo-excitation strength functions
for cold nuclei calculated with the MLO and SLO model
agree over a reasonably extensive range of γ-ray energies
around the GDR peak.

An overall comparison of the calculations within dif-
ferent simple models and experimental data shows that
the EGLO, GFL and MLO (SMLO) approaches with
asymmetric RSF provide a reasonably reliable and sim-
ple method of estimating the dipole RSF for both γ-decay
and photoabsorption over a relatively wide energy inter-
val ranging from zero to slightly above the GDR peak,
when GDR parameters are known or GDR systematics
can be safely applied. The MLO (SMLO) closed-form
models with asymmetric RSF are recommended for gen-
eral use; they can be used to predict the statistical dipole
γ-ray emission and extract the GDR parameters from the
experimental data for heated nuclei.

Different variants of the MLO (SMLO) approach are
based on sound relations between the RSF and nuclear
response function, leading potentially to more reliable
predictions among the simple models. However, the en-
ergy and temperature dependence of the width Γ(Eγ , T )
is governed by complex mechanisms of nuclear dissipa-
tion, and is still an open problem.

Reliable experimental information is needed to im-
prove the determination of the temperature and energy
dependence of the RSF, so that the contributions of
the different mechanisms responsible for the damping of
the collective states can be further investigated. This
approach would help discriminate between the various
closed-form models describing the dipole RSF, and will
lead to enhancement of the reliability of the dipole RSF
calculations using simple models.

Large-scale HFB+QRPA calculations of the E1
strength have been undertaken in Refs. [340, 342], and
give the same degree of accuracy as the MLO model in
the energy range from 4 to 8 MeV for nuclei close to the
stability line. However, HFB+QRPA calculations reveal
broadening of the GDR shape when moving away from
the stability line. This effect stems from the microscopic
treatment and can not be accounted for by using experi-
mental GDR shapes, which were measured for stable nu-
clei only. Thus, the use of the HFB+QRPA results should
be recommended for calculations on nuclei far from the
stability line.

VIII. NUCLEAR FISSION

Nuclear fission remains the most complex topic in ap-
plied nuclear physics. Since its discovery, nuclear fis-
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MLO1 width can be expressed as follows:

Γ =






Γ (εγ , Tf ) = a(εγ + Uf ) = aUi for γ-decay,

Γ (εγ , 0) = aεγ for photoabsorption,
(159)

where a = Γr/Er = CKMF Er if the normalization con-
dition Γr = Γ(εγ = Er, T = 0) is adopted for cold nuclei.

The modified Lorentzian model, given by Eqs. (151)
and (157) with the simplified expression in Eq. (159) for
Γ (εγ , T ), is defined as the Simplified Modified Lorentzian
(SMLO) model [314] .

The RSF of the MLO2 and MLO3 models also takes
the form of Eq. (157), but includes an approximation
of independent dissipation sources for the widths [286].
These widths are taken as the sum of the collisional com-
ponent !/τc and a term ks !/τw which simulates the frag-
mentation contribution to the width:

Γ (εγ , T ) =
!

τc (εγ , T )
+ ks(εγ)

!

τw
. (160)

Collisional relaxation time is determined by Eq. (156) in
the MLO2 model; collective relaxation time in the MLO3
model takes the form of Eq. (138), with Ccoll determined
by the neutron-proton cross section σin(n, p) in the nu-
clear medium near the Fermi surface:

Ccoll ≡ CMLO = F · c, F =
σin(n,p)

σfree(n,p)
, (161)

c =
4

9π2

m

!2
σfree(n, p) = 0.05386 MeV−1, (162)

where σfree(n,p)=5 fm2 is adopted for the free space
cross section and !2/m = 41.80349 MeV·fm2.

The magnitude of the second fragmentation compo-
nent in Eq. (160) is taken to be proportional to the wall
formula [323, 324]:

!

τw
= Γw =

3

4

!vF

R0
=

32.846

A 1/3
MeV , (163)

with εF = m v2
F /2 = 37 MeV for the Fermi energy and

R0 = r0A1/3 with r0 = 1.27 fm. A scaling factor ks

in Eq. (160) is included in the energy-dependent power
approximation:

ks(εγ) =

{
kr + (k0 − kr)|(εγ − Er)|ns , εγ < 2Er,
k0, εγ ≥ 2Er,

(164)
where k0 = 0.3, ns = 1 and F = 1 were adopted from
comparisons of calculations with experimental γ-decay
strengths. The constant kr is determined from the con-
dition of equivalence of the MLO2 and MLO3 widths
Γ (εγ = Er, T = 0) at the GDR energy with the GDR
width Γr in cold nuclei: kr = (Γr − CcollE2

r ) τw/!.
The zero frequency limit of the gamma-decay RSF in

the MLO models has the following form:
←−
f MLO(εγ = 0) = 8.674 · 10−8σrΓr×

Γ(εγ = 0, Ti)

E3
r

Ti

Er
MeV−3. (165)

FIG. 41: E1 γ-decay strength functions plotted against
mass number; experimental data are taken from the
gamma/gamma-strength-exp.dat file [10].

This expression differs from Eq. (150) for the KMF,
EGLO and GFL models by a factor of:

Γ(εγ = 0, Ti)

Γα(εγ = 0, Ti)
·

Ti

ErKα
. (166)

7. E1 strength functions in deformed nuclei

An approximation of axially deformed nuclei is usually
adopted for the calculation of E1 strength functions in
deformed nuclei, with the radius defined by:

R(θ) = R
′

0 (1 + α2P2(cos θ)) = R
′

0 (1 + β2Y20) , (167)

R
′

0 = R0/λ, λ3 = 1 +
3

5
α2

2 +
2

35
α3

2, (168)

where R0 is the nuclear radius of a spherical nucleus
with the same volume of the deformed nucleus, P2(cos θ)
is a Legendre polynomial, and Y20 =

√
5/4πP2 is the

spherical harmonic. Both α2 and β2 =
√

4π/5α2 are
quadrupole deformation parameters chosen to reproduce
the ground-state quadrupole nuclear moments Q.

The E1 strength function in axially deformed nuclei
is taken as the sum of two components [316], each with
corresponding energy Er,j , damping width Γr,j and peak
value for the photoabsorption cross section σr,j . Parame-
ters Er,j , Γr,j and σr,j (j = 1, 2) correspond to collective
vibrations along (j = 1) and perpendicular to (j = 2)
the axis of symmetry, and σr,1 = σr,2/2.

Fragmentation damping widths ΓF,1, ΓF,2 of the collec-
tive vibrations along two principal axes of a spheroid are
assumed in the MLO2 and MLO3 methods to be propor-
tional to the dipole widths (Γs,1 and Γs,2) of the surface
dissipative model [325]:

ΓF, j(εγ) = ks(εγ)Γs, j ,

Γs,1 = Γw/aδ
0, Γs,2 = Γw/bδ

0, δ = 1.6, (169)
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where Γw is defined by Eq. (163), and a0 and b0 are
relative semi-axes of a spheroid:

a0 ≡ R(θ = 0)/R0 = (1 + α2) /λ,

b0 ≡ R(θ = π/2)/R0 = (1 − 0.5α2) /λ. (170)

Parameters kr (Eq. (164)) and CGFL appear in ex-
pressions that define the damping widths for MLO and
GFL in deformed nuclei, and are determined by fitting
theoretical damping widths (Γr,j) of the normal modes
of the giant dipole resonance in cold nuclei to the cor-
responding experimental values. CGFL can become neg-
ative. It means that the fragmentation component Γdq

of the width Eq. (147) is overestimated. However the
GFL model can be used as a good parameterization of
the dipole γ-decay strength functions in deformed nuclei
too.

8. Comparison with experimental data

Variations in the dipole γ-decay strength functions←−
f E1 with mass number are shown in Fig. 41 for 50 nu-
clei included in the RIPL experimental database. The
back-shifted Fermi gas model (BSFGM) was used to de-
fine the thermal excitation energy Uf = Ui − US − εγ

of the final state in terms of the temperature Tf [167].
This approach relates the temperatures Ti and Tf to each
other and to the thermal excitation energy Ui of the ini-
tial state, with Tf = (1 +

√
1 + 4a(aT 2

i − Ti − εγ))/2a

and Ti = (1 +
√

1 + 4a(Ui − US)/2a, where US is the
energy pairing parameter and a is the level density pa-
rameter. Values for the level density parameters a and
energy shifts US were taken from the beijing bs1.dat file
of RIPL-1 [6] with rigid-body moments of inertia, or from
global systematics [326] when no experimental data were
available. Quadrupole deformation parameters β2 were
calculated from the ground-state deformation parameters
given in the RIPL-1 mass file and using Eqs. (178) and
(177). Nuclei with β2 ≤ 0.01 were considered to be spher-
ical. The effective quadrupole deformation parameters β̄2

and energies E2 of the first 2+ state for even-even nuclei
in the GFL model were taken from table I of Ref. [303].
When experimental data on the lower quadrupole vibra-
tional states were unavailable for even-even nuclei and
for all odd-A and odd-odd nuclei, |β̄2| were used for β̄2

and a global parameterization was adopted for s2 [303]

s2 ≡ E2β̄
2
2 = 217.16/A2 MeV. (171)

The results shown in Fig. 41 were calculated for γ-ray en-
ergies that correspond to the mean energy ε̄γ of E1 tran-
sitions in the gamma/gamma-strength-exp.dat file. Ex-
perimental data were taken also from this file and they
were extracted by Kopecky from the average resonance
capture data at low energies.

Plots show that the GFL and MLO(ML02 variant)
models describe the experimental γ-decay data with εγ ≈

FIG. 42: E1 γ-decay strength function plotted against energy
εγ for 90Zr; experimental data are taken from Ref. [327].

Ui = Sn better than the EGLO and SLO models for
A ≤ 220. GFL and MLO calculations are in very close
agreement.

Figure 42 shows calculated γ-decay strengths
←−
f E1 for

90Zr; experimental data are taken from Ref. [327], and
GFL, MLO and EGLO data are calculated for the exper-
imental energies Ui and εγ . The MLO and SLO models
for 90Zr describe the experimental data better than GFL
and EGLO, and the MLO representation is closer to the
experimental data than that of the SLO model.

Figure 43 compares experimental strength functions
taken from Ref. [289] with the calculated strength func-

tions
←−
f E1 for 144Nd, with the initial excitation energy Ui

equal to the neutron separation energy Sn (≈ 7.8 MeV).
EGLO, GFL and MLO results are characterized by a
non-zero limit and temperature dependence at low γ-ray
energies. All these models are in reasonable agreement
for εγ ≤ 2 MeV, and describe the experimental data much
better than the SLO model (which predicts a vanishing
strength function at zero γ-ray energy) [314, 328].

The photo-excitation strength function Eq. (133) is of
the same form as the γ-decay strength function, except
that the temperature of the initial state (Ti) is adopted
instead of the final state temperature (Tf ). E1 photo-
excitation strength functions calculated by means of the
MLO(SMLO), GFL and SLO models are in good agree-
ment for cold nuclei over a wide range of gamma-ray en-
ergies near the GDR peak energy [314, 329, 330].

C. Microscopic approach to E1 strength function

The Lorentzian and previously described closed-form
expressions for the γ-ray strength suffer from various
shortcomings:

(1) they are unable to predict the resonance-like en-
hancement of the E1 strength at energies below
the neutron separation energy as demonstrated, for
example, by nuclear resonance fluorescence exper-
iments. This departure from a Lorentzian profile
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FIG. 1. Comparison of SMLO (black solid line) and RQRPA (red dash line) calculations with the experimental photoabsorption
cross sections and other systematic GDR parameters calculations QRPA [11] (blue dash dot line) and MLO1* from RIPL-3 [2]
(magenta dash dot dot line) for 52Cr, 90Zr, 120Sn and 208Pb.

curve. In the standard Lorentzian model (SLO) [14, 15],
the width is adopted as a constant that is equal to the
GDR width Γr. In other models, such as Enhanced Gen-
eralized Lorentzian models (EGLO) [16, 17], Generalized
Fermi Liquid model (GFL) [18], Hybrid model (GH) [19]
and Modified Lorentzian model (MLO) [4], the width is
taken as dependent on the γ-ray energy Γ(εγ). Although
in the different models the Γ(εγ) has a various formula,
Γr is the only parameter of the γ-ray energy dependent
width.

So in our phenomenological GDR parameters, first we
have to define three basic values for the photoabsorption
cross section. They are taken in the forms of mass num-
ber A and deformation β2:

Er = a1(1 + a6I
2)/A1/3 + a2(1 + a7I

2)/A1/6,

Γr = a3E
a4
r − a8Erβ2,

σr =
2

π
a5 · σTRK/Γr.

(20)

where ai(i = 1, · · · , 8) are the adjustable parameters,
I = (N − Z)/A, and σTRK = 60NZ/A is the clas-
sical dipole Thomas-Reiche-Kuhn sum rule [48]. Our
phenomenological GDR parameters are not only for the
spherical nuclei, but also can be used to calculate the

axially deformed nuclei. We adopt the following formula:

Er,2 = Er
1

b0
[1− 1.51 · 10−2(a20 − b20)],

Er,1 = Er,2/

[

0.911
a0
b0

+ 0.089

]

,

Γr,2 = b2E
b3
r,2 − Er,2b6β2, Γr,1 = b4E

b5
r,1 − Er,1b7β2,

σr,2 = σr |1− b8 + b1β2|, σr,1 = σr|b8 − b1β2|.
(21)

,where indexes 1 and 2 correspond respectively to the
collective motion along and perpendicular to the axis
of symmetry with relative semi-axes of a spheroid, and
bi(i = 1, · · · , 8) are the parameters.

a0 = (1 + α2)/λ

b0 = (1− 0.5α2)/λ

λ3 = 1 +
3

5
α2
2 +

2

35
α3
2

(22)

Effective quadrupole deformation parameters α2 or β2

were determined from the ground state deformation pa-
rameters βn ≡ αn/

√

(2n+ 1)/4π, with the nuclear ra-
dius expansion expressed in spherical harmonics. βn pa-
rameters was taken form Ref. [49].
In Table. IV, we display all the phenomenological GDR

parameters and total χ2-values of MLO1, MLO2, MLO3,

5
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FIG. 2. The χ2 of each nuclei with different models, the red and blue points are the χ2 values for the spherical and deformed
nuclei, respectively.

TABLE IV. Parameters and χ2-values of systematics within MLO1, MLO2, MLO3, EGLO, GFL, SLO, GH and SMLO models.

MLO1 MLO2 MLO3 EGLO GFL SLO GH SMLO SLO* MLO1*

a1 42.722 41.504 42.563 43.1769 39.2025 39.7783 38.4423 42.0152 27.47 28.69

a2 16.0865 16.7204 16.1593 16.0834 18.8849 17.6336 18.6947 16.4032 22.063 21.731

a3 0.0111 0.0124 0.0122 0.0048 0.0104 0.012 0.01 0.0062 0.0277 0.0285

a4 1.0375 1.0157 1.0071 1.1963 1.0186 1.0095 1.0114 1.1682 1.9 1.9

a5 0.0452 0.0477 0.0457 0.0309 0.0395 0.0459 0.0384 0.0364 1.222 1.267

a6 -9.0294 -10.4079 -10.3748 -5.00 -6.6123 -11.7035 -10.4802 -10.5713 0 0

a7 8.8811 9.6039 10.3457 4.1809 4.4196 9.7693 7.6594 10.3444 0 0

a8 0.0039 0.0049 0.0043 0.0017 0.0023 0.0051 0.0039 0.0014 0 0

b1 -0.8837 -0.903 -0.8877 -0.7608 -0.8142 -0.8966 -0.8669 -0.7962 0 0

b2 0.2753 0.5083 0.395 0.0086 0.2809 0.5838 0.5052 0.0629 0.026 0.026

b3 1.0789 0.8666 0.9495 2.2425 1.1868 0.7884 0.9247 1.5836 1.91 1.91

b4 0.0855 0.0503 0.0758 0.1945 0.4745 0.0757 0.1551 0.1821 0.026 0.026

b5 1.4629 1.5903 1.4809 1.4222 0.9907 1.4819 1.3278 1.2703 1.91 1.91

b6 -0.184 -0.1789 -0.1604 -0.1539 -0.3373 -0.1666 -0.2366 -0.1882 0 0

b7 0.0815 -0.0221 0.036 1.0276 0.3179 0.1194 0.2426 0.2623 0 0

b8 0.2448 0.2307 0.2474 0.2914 0.2475 0.229 0.2303 0.304 0.333 0.333

χ2 9.8769 12.8526 10.7246 9.742 10.1275 15.9214 15.6991 9.5161 25.8048 19.0095

1. RIPL-3 recommend GDR parameters
2. CNDC GDR parameters
3. Results comparison
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where    are  adjustable  parameters,
,  and    is  the  classical  dipole

Thomas-Reiche-Kuhn sum rule [52]. Comparing with the
Eq.(137)  in  RIPL-3  Ref.  [2],  we  added  three  extra  parts
with  three  more  parameters,  which  correspond  to  the
neutron-proton  asymmetry  I  and  deformation    of  the
nuclei.  Our  phenomenological  GDR  parameters  are  not
only for the spherical nuclei, but also can be used to cal-
culate  axially  deformed  nuclei.  We  adopt  the  following
formula:

where  indexes    and    correspond to  the  collective  mo-
tion along and perpendicular to the axis of symmetry, re-
spectively, with the relative semi-axes of a spheroid. We
added eight parameters   to change the value
of width   and photoabsorption cross-section   with de-

formation  .

Effective  quadrupole  deformation  parameters    or 
were determined from ground state deformation paramet-
ers  , with  the  nuclear  radius   expan-
sion  expressed  in  spherical  harmonics.    parameters
were provided by Ref. [53].

In Table 4, we display all the phenomenological GDR
parameters and total  -values of MLO1, MLO2, MLO3,
EGLO,  GFL,  SLO,  GH,  and  SMLO  models.  Symbols
SLO* and  MLO1* denote  the  parameters  in  RIPL-3  [2].
In Fig. 2, we display the   of each nucleus with different
models.  The  red  and  blue  points  are    values  for  the
spherical  and  deformed  nuclei,  respectively.  Comparing
with the global GDR parameters of RIPL-3, our systemat-
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FIG. 3. Comparison of SMLO (solid line) calculations with the experimental photoabsorption cross sections for 28Si, 80Se, 127I
and 186W. The QRPA (dash dot line) calculations is based on the Sly4 Skyrme force [11] and MLO1* (dash dot dot line) are
the results of the GDR parameters recommended by RIPL-3 [2].

FIG. 4. Comparison of the experimental GDR energy [3] with
the RQRPA calculation obtained with the NL3 interaction
and SMLO calculations. The RQRPA energies are displayed
for 58 spherical nuclei only.
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Fig. 42. Neutron single-particle states in 208Pb. In the left column the relativistic mean-field spectrum, calculated with the NL3
effective interaction, is plotted in comparison with the levels calculated with the energy-dependent effective potential (center),
and with the experimental spectrum (right) (from Ref. [172]).
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Fig. 43. Same as in Fig. 42, but for the neutron single-particle states in 132Sn (from Ref. [172]).

full potential are in good agreement with the experimental single-neutron levels. The energy-dependent
correction, however, seldom changes the ordering of states, and therefore we still find inverted doublets, as
for example 2f5/2–3p3/2 and 1i11/2–2g9/2 in 208Pb. In addition to single-nucleon spectra, we also compare

Binding energy, radius, single particle level
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2.3.3. Application of the GMRES method for solving the QFAM equations
In the DIRQFAM code [1] we solve the QFAM equations:

(Eµ + Eν − ωγ )Xµν(ωγ ) = −
(

F 20
µν(ωγ ) + δH20

µν(ωγ )
)

, (48)

(Eµ + Eν + ωγ )Yµν(ωγ ) = −
(

F 02
µν(ωγ ) + δH02

µν(ωγ )
)

, (49)

for a given complex frequency ωγ = ω+γ i. F 20
µν(ωγ ) and F 02

µν(ωγ ) correspond to the external field, while H20
µν(ωγ ) and H02

µν(ωγ ) depend 

on the induced single-particle Hamiltonian δhkl(ωγ ) and pairing fields δ%(+)
kl (ωγ ), 

(
δ%

(−)
kl (ωγ )

)∗
which in turn depend on the induced 

densities, i.e., on the QFAM amplitudes Xµν (ωγ ) and Yµν(ωγ ). We denote the induced single-particle Hamiltonian and the pairing field 
by the symbol x(ωγ ), i.e.,

x(ωγ ) =
{
δhkl(ωγ ), δ%

(+)
kl (ωγ ),

(
δ%

(−)
kl (ωγ )

)∗}
. (50)

Furthermore, xi(ωγ ) denotes the value calculated in the ith QFAM iteration. The goal is to obtain the same self-consistent value xi(ωγ ) =
xi+1(ωγ ) in two consecutive iterations, up to the given error tolerance. In the DIRQFAM code [1] the self-consistency was achieved by 
employing the modified Broyden’s method [11].

The input for the ith QFAM iteration are the values induced single-particle Hamiltonian and pairing field from the previous iteration 
and the following transformations are performed:

xi(ωγ )
1.−→

{
δH20

µν(ωγ ), δH02
µν(ωγ )

}
2.−→

{
Xµν(ωγ ), Yµν(ωγ )

} 3.−→
{
δρkl(ωγ ), δκ (±)

kl (ωγ )
}

4.−→
{
δρ(r,ωγ ), δ j(r,ωγ ), P (±)

Nz,Nr
(ωγ )

}
5.−→ xi+1(ωγ ). (51)

Following the formulae in our previous work [1], notice that steps 1., 3., 4. and 5. are linear transformations. For example, step 1. is a 
linear transformation performed by multiplying with Bogoliubov unitary matrix W , while the numerical integration in step 5. can also be 
written as a linear transformation. Only step 2. is affine transformation which is actually the QFAM equation:

Xµν(ωγ ) = −
(

F 20
µν(ωγ ) + δH20

µν(ωγ )
)

/(Eµ + Eν − ωγ ), (52)

Yµν(ωγ ) = −
(

F 02
µν(ωγ ) + δH02

µν(ωγ )
)

/(Eµ + Eν + ωγ ). (53)

If we set the residual interaction to zero, i.e., δH20
µν(ωγ ) = δH02

µν(ωγ ) = 0, and perform steps 2., 3., 4., and 5., we obtain the free response 
value xfree(ωγ ). Hence, the QFAM iteration (51) can be written as:

xi+1(ωγ ) = T (ωγ )xi(ωγ ) + xfree(ωγ ), (54)

where T (ωγ ) is a matrix describing the linear transformation induced by residual interaction which is ignored in free response. Size of 
the vector x(ωγ ), and consequently the order of matrix T (ωγ ), tends to be extremely large as the dimension of the configuration space 
increases. E.g. with only Nshells = 10 oscillator shells used in the expansion of the Dirac spinors, the size of the vector x(ωγ ) is ≈ 105, 
while for Nshells = 20 oscillator shells the size is ≈ 2 × 106. Despite its size, the vector xfree(ωγ ) is easy to calculate, while the calculation 
of the matrix T (ωγ ) can be prohibitively time consuming. However, the QFAM iteration (54) can be recognized as a means of calculating 
the mapping x &→

(
I −T (ωγ )

)
x, for finding the self-consistent solution:

(
I −T (ωγ )

)
x(ωγ ) = xfree(ωγ ). (55)

It turns out that the spectrum of the residual interaction matrix T (ωγ ) contains relatively small number of eigenvalues far from zero. 
This is because, for a given excitation operator, the residual interaction tends to excite only a mall subset of particle-hole pairs. Hence, 
the eigenvalues of the matrix I −T (ωγ ) are clustered around 1, with relatively small number of the eigenvalues is scattered around the 
complex plane away from 1.

As an illustration, we have calculated the matrix T (ωγ ) explicitly for deformed isotope 100Zr and J = 1, K = 0 isovector excitation 
operator. The ground state deformation is β ≈ 0.47 and we have used the DD-ME2 effective interaction and separable pairing [12,13]. 
However, we use only Nshells = 6 shells, otherwise it would be difficult to fit the matrix T (ωγ ) into the computer memory. In Fig. 3
we show the spectrum σ (I − T (ωγ )) for excitation frequency ωγ = 30 + 0.05i MeV. As we have anticipated, only a small fraction of 
eigenvalues are scattered away from 1. Motivated by the illustrative example shown in the previous subsection, this situation is well 
suited for the GMRES method, and thus in the DIRQFAM code we have substituted the previously used modified Broyden’s method with 
GMRES solver.

To demonstrate the superiority of the GMRES method in terms of convergence speed, we perform a calculation of the isovector J =
3, K = 1 response of 240Pu with deformed ground state β ≈ 0.28, where we use Nshells = 20 oscillator shells and smearing width γ = 0.05
MeV. Again, DD-ME2 interaction and separable pairing are used. We sweep across frequencies in range from 0 MeV to 50 MeV with an 
increment of 0.02 MeV. The response function is shown in Fig. 4 and it looks rather involved with many significant peaks. We compare 
the number of QFAM iterations performed by the modified Broyden’s method where 70 vectors are retained in Broyden’s history with the 
GMRES method using a maximum of 70 Arnoldi vectors. The same self-consistency tolerance is used in both methods. Modified Broyden’s 
method took a total of 364527 QFAM iterations, i.e. on the average 146 QFAM iterations per frequency, while GMRES took a total of 
107596 QFAM iterations,2 i.e. on the average 44 QFAM iterations per frequency. Thus, for this example, GMRES method required 3.4 times 

2 We have taken into the account additional two QFAM iterations needed in GMRES, one for finding b, and another for finding the final solution xn. We use x0 = 0 as 
initial guess and thus the initial Arnoldi vector is q1 = r0/‖r0‖ = b/‖b‖, i.e. q1 is given by b.
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linear transformation performed by multiplying with Bogoliubov unitary matrix W , while the numerical integration in step 5. can also be 
written as a linear transformation. Only step 2. is affine transformation which is actually the QFAM equation:

Xµν(ωγ ) = −
(

F 20
µν(ωγ ) + δH20

µν(ωγ )
)

/(Eµ + Eν − ωγ ), (52)

Yµν(ωγ ) = −
(

F 02
µν(ωγ ) + δH02

µν(ωγ )
)

/(Eµ + Eν + ωγ ). (53)

If we set the residual interaction to zero, i.e., δH20
µν(ωγ ) = δH02

µν(ωγ ) = 0, and perform steps 2., 3., 4., and 5., we obtain the free response 
value xfree(ωγ ). Hence, the QFAM iteration (51) can be written as:

xi+1(ωγ ) = T (ωγ )xi(ωγ ) + xfree(ωγ ), (54)

where T (ωγ ) is a matrix describing the linear transformation induced by residual interaction which is ignored in free response. Size of 
the vector x(ωγ ), and consequently the order of matrix T (ωγ ), tends to be extremely large as the dimension of the configuration space 
increases. E.g. with only Nshells = 10 oscillator shells used in the expansion of the Dirac spinors, the size of the vector x(ωγ ) is ≈ 105, 
while for Nshells = 20 oscillator shells the size is ≈ 2 × 106. Despite its size, the vector xfree(ωγ ) is easy to calculate, while the calculation 
of the matrix T (ωγ ) can be prohibitively time consuming. However, the QFAM iteration (54) can be recognized as a means of calculating 
the mapping x &→

(
I −T (ωγ )

)
x, for finding the self-consistent solution:

(
I −T (ωγ )

)
x(ωγ ) = xfree(ωγ ). (55)

It turns out that the spectrum of the residual interaction matrix T (ωγ ) contains relatively small number of eigenvalues far from zero. 
This is because, for a given excitation operator, the residual interaction tends to excite only a mall subset of particle-hole pairs. Hence, 
the eigenvalues of the matrix I −T (ωγ ) are clustered around 1, with relatively small number of the eigenvalues is scattered around the 
complex plane away from 1.

As an illustration, we have calculated the matrix T (ωγ ) explicitly for deformed isotope 100Zr and J = 1, K = 0 isovector excitation 
operator. The ground state deformation is β ≈ 0.47 and we have used the DD-ME2 effective interaction and separable pairing [12,13]. 
However, we use only Nshells = 6 shells, otherwise it would be difficult to fit the matrix T (ωγ ) into the computer memory. In Fig. 3
we show the spectrum σ (I − T (ωγ )) for excitation frequency ωγ = 30 + 0.05i MeV. As we have anticipated, only a small fraction of 
eigenvalues are scattered away from 1. Motivated by the illustrative example shown in the previous subsection, this situation is well 
suited for the GMRES method, and thus in the DIRQFAM code we have substituted the previously used modified Broyden’s method with 
GMRES solver.

To demonstrate the superiority of the GMRES method in terms of convergence speed, we perform a calculation of the isovector J =
3, K = 1 response of 240Pu with deformed ground state β ≈ 0.28, where we use Nshells = 20 oscillator shells and smearing width γ = 0.05
MeV. Again, DD-ME2 interaction and separable pairing are used. We sweep across frequencies in range from 0 MeV to 50 MeV with an 
increment of 0.02 MeV. The response function is shown in Fig. 4 and it looks rather involved with many significant peaks. We compare 
the number of QFAM iterations performed by the modified Broyden’s method where 70 vectors are retained in Broyden’s history with the 
GMRES method using a maximum of 70 Arnoldi vectors. The same self-consistency tolerance is used in both methods. Modified Broyden’s 
method took a total of 364527 QFAM iterations, i.e. on the average 146 QFAM iterations per frequency, while GMRES took a total of 
107596 QFAM iterations,2 i.e. on the average 44 QFAM iterations per frequency. Thus, for this example, GMRES method required 3.4 times 

2 We have taken into the account additional two QFAM iterations needed in GMRES, one for finding b, and another for finding the final solution xn. We use x0 = 0 as 
initial guess and thus the initial Arnoldi vector is q1 = r0/‖r0‖ = b/‖b‖, i.e. q1 is given by b.
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Table 2
Memory consumption of the program and 
the execution time per QFAM iteration for 
a given number of shells in HO basis. For 
comparison, values given in the parenthe-
ses are obtained with the old version of 
the code.

Nshells Memory [GB] Time [s]

10 0.42 (0.75) 0.24 (0.36)
12 0.68 (1.46) 0.49 (0.82)
14 1.11 (2.75) 0.99 (1.75)
16 1.77 (5.68) 1.82 (3.32)
18 2.83 (8.39) 3.23 (5.71)
20 4.40 (13.9) 5.52 (9.54)
22 6.65 (22.2) 8.97 (15.5)
24 11.1 (34.2) 14.1 (26.0)

• subroutine fam_dpotentials: The potentials related to the meson-exchange interactions are now included.

The rest of the subroutines and functions have undergone only minor modifications.
Furthermore, in comparison to the original version of the DIRQFAM code, we have significantly reduced the memory requirements. 

This is achieved by storing all block matrices entering the QFAM calculation as blocks of memory instead as full matrices dominantly 
populated by zero entries. We notice that this modification also improves the overall efficiency of the code due to better data caching.

We present the results of a benchmark calculation performed on Intel® Xeon® Platinum 8280 @ 2.70 GHz machine. BLAS and LAPACK 
are provided via Intel® oneAPI Math Kernel Library on a single thread. We select the isoscalar J = 2, K = 2 excitation with Gaussian 
quadrature grid: NGH = 25, NGL = 50. In order to compare the performance with the previous version of the code, the DD-PC1 parame-
terization of the Lagrangian is used and 70 Arnoldi vectors stored in the memory are used by the GMRES solver in this version of the code, 
while an analogous number of 70 Broyden’s vectors are stored in the memory when the older version of the code is used. In Table 2 we 
give the memory consumption of the program and the execution time per QFAM iteration for a given number of shells Nshells in HO basis. 
Values in the parentheses are obtained with the old version of the code. We notice that the new version of the code requires roughly 
three times less memory for Nshells ≥ 16.

3.2. Compilation and code execution

The programming language of the DIRQFAM v2.0.0 code is Fortan and the user should provide an implementation of the BLAS and 
LAPACK (version 3.1. or higher) linear algebra libraries. Since the code depends heavily on zgemm, dgemm and dgemv subroutines, the 
user should provide an efficient implementation of the BLAS library. We recommend an open source implementation OpenBLAS, or freely 
available Intel® oneAPI Math Kernel Library as a part of the Intel® oneAPI Base Toolkit.

The code is compiled by standard Makefile build automation which is set to work with the GFortran compiler. If the user invokes make
command, the compilation of the code will produce the executable file run. The code is then executed by invoking the ./run command. 
If the user invokes make dbg, the code is compiled in debug mode with various additional checks, and the executable dbg is generated. 
Since the executable produced in debug mode is considerably slower, this mode should be used only for testing and developing purposes. 
If OpenBLAS is employed, the command export OPENBLAS_NUM_THREADS=4 can be invoked to select the number of threads used 
by OpenBLAS. If Intel® oneAPI Math Kernel Library is employed, the command export MKL_NUM_THREADS=4 can be invoked to select 
the number of threads used by the Intel® oneAPI Math Kernel Library.

3.3. Input data

The input data are provided in the dirqfam.dat file, and are separated into two parts: i) input data related to the ground state 
calculation (detailed description can be found on pages 12 and 13 in Ref. [20]), ii) input data related to the QFAM calculation. The QFAM 
parameters interface include the following data.

• Calculation type (calculation_type) flag. Value 0: Free response is calculated for a given range of energies. Value 1: Self-
consistent response is calculated for a given range of energies. Value 2: Self-consistent response is calculated for a given energy and 
various data are printed. Value 3: Self-consistent solution is calculated along a circular contour and the contour integral is calculated.

• Coulomb interaction flag (include_coulomb). If set to 0/1, the Coulomb interaction is omitted/included in both the ground state 
and the QFAM calculation.

• Pairing interaction flag (include_pairing). If set to 0/1, the pairing interaction is omitted/included in both the ground state and 
the QFAM calculation.

• Number of Gauss-Hermite (NGH) nodes in the z > 0 direction and number of Gauss-Laguerre (NGL) nodes in the r⊥ direction. One 
should use at least:

NGH≥ max
{

Nshells + 1, N(mesons)
shells

}
,NGL≥ max

{
2(Nshells + 1), N(mesons)

shells

}
, (88)

where Nshells is the number of HO shells (n0f) used for Dirac spinor expansion and N(mesons)
shells is the number of HO shells (n0b) 

used for the expansion of meson fields. We recommend fixing these values to NGH=25 and NGL=50, since one rarely uses more than
n0f=24 and n0b=50 shells.
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3

It can be noted that the SLO, EGLO and GFL expres-
sions are not consistent with the general relations be-
tween photoabsorption cross section and the imaginary
part of the response function. To avoid this shortcoming,
at least approximately, the Modified Lorentzian approach
(MLO) was proposed [4]. The shape of MLO results from
a semi-classical approach based on the Landau-Vlasov
equation with a non-Markovian collision term. The pho-
toabsorption cross section within the MLO model has the
following form:

σGDR,MLO(εγ) = σrΓrεγ
εγ

1− exp(εγ/Tf )

×
Γγ(εγ)

(ε2γ − E2
r )2 + [Γγ(εγ) · εγ ]2

(14)

where Γr = Γγ(εγ = Er) at zero excitation energy; the
width Γ(εγ) depends on the assumptions on the damp-
ing mechanism for the collective states. Different semi-
empirical expressions for the width are used in the MLO
approach (MLO1, MLO2, MLO3), but, as a rule, corre-
sponding RSF are in rather close agreement.
In the case the excitation energy is not too high and

εγ ranges from zero up to the GDR energy, the MLO1
width Γ(εγ) can be expressed as

Γ(εγ) =

{

a(εγ + Uf) = aU, for γ-decay
aεγ , for photoabsorption

(15)
where a = Γr/Eγ = CKMF · εγ if the normalization con-
dition Γr = Γγ(εγ = Er) is adopted for cold nuclei. This
model is denoted as the Simplified Modified Lorentzian
(SMLO) model [3]. The values of the parameter a is ob-
tained by fitting the SMLO shape to the experimental
photoabsorption cross sections in spherical nuclei.

III. CALCULATIONS AND DISCUSSION

In this section, we construct two kinds of systemat-
ics GDR parameters for nuclei from medium to heavy.
One is based on the microscopic RQRPA calculation.
The other is achieved by phenomenological models. The
shape of parameters is obtained by fitting the theoretical
calculation to the experiment photoabsorption cross sec-
tions from the EXFOR library [26]. In Table I and II we
have listed 47 nuclei which we use to fit the systematics
GDR parameters, there are 25 spherical nuclei and 22
axially deformed nuclei.
The least square fitting procedure was employed, in

which the data points were weighted according to the
inverse square of their uncertainties, that is, a minimum
value was sought for χ2 given by

χ2 =
1

Nf

N
∑

i=1

(σcal(εi)− σexp(εi))2

(∆σ(εi))2
(16)

where σcal is the value for the theoretical curve fit to
the cross section data at γ-ray energy εi, σexp(εi) is the

measured value for the total photoabsorption cross sec-
tion with uncertainty ∆σ(εi) at that energy, and Nf =
N−Npar is the number of degrees of freedom for the data
set fitted, which is equal to the number N of data points
within the fitting interval minus the number Npar = 16 of
fitted parameters. There are situations where no uncer-
tainties ∆σ(εi) of the experimental cross section σexp(εi)
are given in the EXFOR database. For such cases the rel-
ative uncertainties δσ(εi) ≡ ∆σ(εi)/σexp(εi) were taken
either as a constant value of 10% (i.e., δσ = 0.1), or as an
energy-dependent quantity. The energy-dependent rela-
tive uncertainties were assumed to take minimal values
near the GDR energy and maximal values on the GDR
tails, that is, the triangular shape gave below was ac-
cepted for spherical nuclei

δ(εi) = δmin + b|E1− εi|, (17)

and the trapezoidal shape was used in deformed nuclei

δ(εi) =







δmin + b|E1− εi|, εi < E1,
δmin, E1 ≤ εi ≤ E2,
δmin + b|εi − E2|, εi > E2

(18)

where b = (δmax − δmin)/(E1 − εin); δmin = 0.1 and
δmax = 0.2 are the minimal and maximal values of the
uncertainty; εin is the smallest value of γ-ray energy in
the experimental database. The E1 and E2 are the peak
energies for which the uncertainties are the smallest.
The minimization of the least-squares function is un-

dertaken by the CERN MINUIT package [27]. The stan-
dard deviation of the parameters was estimated using
the MINOS procedure of this code. The calculation was
defined by the following sequence of commands: SEEK
1000, MIGRAD 10000 0.000001, IMPROVE 100, HESSE
1, MINOS 1.

A. Microscopic GDR parameters

In this section, we construct the microscopic GDR
parameters within the relativistic quasiparticle random
phase approximation (RQRPA) calculation which is ob-
tained with the NL3 interaction [21]. RQRPA has been
proved to be able to provide a reliable description of the
GDR centroid and fraction of the energy-weighted sum
rule exhausted by the E1 mode. However, it can only
be used to solve the spherical nuclei, and if we want to
reproduce the photoabsorption cross section of the ex-
perimental data, it is necessary to find a good width
of the Lorentzian distribution. In the previous RQRPA
calculations, the width of Lorentzian distribution usu-
ally treats as a constant [8, 9]. Here we follow the
ref. [47] and define an energy-dependent width parameter
as Γ(εγ) = Γ

√

εγ/EE1 in Eq.(5), where EE1 is the peak
energy of the Giant Dipole Resonance, Γ is one of the pa-
rameters we used to fit the experimental data. In order
to reproduce the photoabsorption cross section of the ex-
perimental data, we add another parameter G in Eq.(2)

4

TABLE I. Experimental value of the spherical nuclei we use
to fit the systematic GDR parameters.

Nucleus points Energy range [MeV] Ref. def. β2

34S 29 12.0 - 26.0 [28] 0.00
40Ar 61 10.0 - 40.0 [29] 0.00
40Ca 70 11.25 - 28.1 [30] 0.00
42Ca 151 10.0 - 40.0 [31] 0.00
44Ca 58 11.5 - 40.0 [31] 0.00
48Ca 60 10.5 - 40.0 [31] 0.00
48Ti 58 11.5 - 40.0 [31] 0.00
51V 41 10.47 - 32.69 [32] 0.00
52Cr 115 11.5 - 40.0 [29] 0.00
90Zr 46 12.2 - 25.7 [33] 0.035
91Zr 101 10.8 - 30.0 [34] 0.053
92Zr 105 15.8 - 27.8 [35] 0.053
94Zr 92 7.85 - 31.0 [34] 0.063
112Sn 167 10.9 - 27.5 [36] 0.018
114Sn 168 10.4 - 27.1 [36] 0.00
116Sn 200 9.70 - 29.6 [36] 0.00
117Sn 232 7.40 - 30.9 [36] -0.044
118Sn 211 9.40 - 30.7 [36] 0.00
119Sn 233 7.40 - 31.1 [36] 0.00
120Sn 207 9.20 - 29.8 [36] 0.00
122Sn 184 8.90 - 27.2 [36] 0.00
124Sn 220 8.60 - 30.9 [36] 0.00
138Ba 61 8.48 - 27.1 [37] 0.00
208Pb 101 7.50 - 37.5 [38] 0.00
209Bi 109 8.01 - 26.4 [37] -0.008

to adjust the height of the curve of the photoaborption
cross seciton

σE1(εγ) =
16π3

9

e2

!c
GεγSE1(εγ) (19)

With the help of MINUIT package, we adjust G and Γ to
improve the RQRPA calculation of the photoabsorption
cross section in Table I. As shown in Table III, the total
χ2
tot of the RQRPA with experimental photoabsorption

cross section has been improved more than 10 times.
In Fig. 1, we present the comparison of our microscopic

GDR parameters (RQRPA) calculations with the exper-
imental photoabsorption cross sections and other GDR
calculations such as: QRPA, MLO1 and SMLO for 52Cr,
90Zr, 120Sn and 208Pb. The QRPA calculations are based
on the Sly4 Skyrme force [11] and the results of MLO1*
are based on the parameters from RIPL-3 [2]. The curves
of the SMLO are calculated by the phenomenological
GDR parameters which we will discuss in the next sec-
tion. As we can see from the Fig. 1, the centroid energy of
RQRPA is more close to the experimental GDR energy.
By adjusting G and Γ parameters, we could reproduce
the experimental photoabsorption cross section as good
as the MLO1*. Our microscopic GDR parameters calcu-
lations can use to estimate the spherical nuclei, and the

TABLE II. Experimental value of the axially deformed nuclei
we use to fit the systematic GDR parameters.

Nucleus points Energy range [MeV] Ref. def. β2

23Na 110 12.8 - 40.0 [39] 0.390
24Mg 82 11.0 - 29.75 [30] 0.356
25Mg 154 9.4 - 40.0 [29] 0.323
27Al 150 10.2 - 40.0 [29] -0.541
28Si 151 10.0 - 40.0 [29] -0.583
29Si 158 8.6 - 40.0 [29] -0.334
63Cu 60 10.5 - 40.0 [29] 0.161
65Cu 60 10.5 - 40.0 [29] -0.155
80Se 68 9.92 - 28.1 [40] 0.150
127I 86 8.78 - 29.5 [41] -0.128

133Cs 66 9.05 - 29.5 [37] -0.103
159Tb 198 7.70 - 27.4 [42] 0.288
181Ta 59 7.50 - 36.5 [43] 0.248
182W 65 8.02 - 20.8 [44] 0.240
184W 65 8.02 - 20.8 [44] 0.221
186W 65 8.02 - 20.8 [44] 0.210
186Os 45 1.11 - 19.7 [45] 0.205
188Os 84 7.44 - 30.4 [45] 0.179
189Os 77 7.44 - 29.9 [45] 0.170
190Os 84 7.44 - 30.4 [45] 0.153
192Os 82 7.44 - 29.9 [45] 0.145
235U 38 5.22 - 18.3 [46] 0.241

TABLE III. The parameters and χ2
tot of microscopic GDR

parameters within RQRPA. C means constant width of the
Lorentzian distribution., ED stands for energy-dependent
width.

Γ G χ2
tot

RQRPA 2.0 (C) 1.0 270.0

RQRPA(fitted) 1.59 (ED) 0.65 21.0

cross section for heavy nuclei are lower than the experi-
mental data.

B. Phenomenological GDR parameters

In this section, the systematics GDR parameters based
on the phenomenological models are constructed system-
atically. As introduced in Sec. II, the phenomenological
models assume the total photoabsorption cross section
has a Lorentzian shape. In spherical nuclei, it depends
on the GDR parameters: the energy Er, the value σr of
the photoabsorption cross section and the width Γr at
the GDR energy. In axially deformed nuclei, it is taken
as a sum of two components with two sets of the GDR
parameters.
There are several different models of the photoasborp-

tion cross section description. The major difference of
various models is the expressions for the width of the
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2.3.3. Application of the GMRES method for solving the QFAM equations
In the DIRQFAM code [1] we solve the QFAM equations:

(Eµ + Eν − ωγ )Xµν(ωγ ) = −
(

F 20
µν(ωγ ) + δH20

µν(ωγ )
)

, (48)

(Eµ + Eν + ωγ )Yµν(ωγ ) = −
(

F 02
µν(ωγ ) + δH02

µν(ωγ )
)

, (49)

for a given complex frequency ωγ = ω+γ i. F 20
µν(ωγ ) and F 02

µν(ωγ ) correspond to the external field, while H20
µν(ωγ ) and H02

µν(ωγ ) depend 

on the induced single-particle Hamiltonian δhkl(ωγ ) and pairing fields δ%(+)
kl (ωγ ), 

(
δ%

(−)
kl (ωγ )

)∗
which in turn depend on the induced 

densities, i.e., on the QFAM amplitudes Xµν (ωγ ) and Yµν(ωγ ). We denote the induced single-particle Hamiltonian and the pairing field 
by the symbol x(ωγ ), i.e.,

x(ωγ ) =
{
δhkl(ωγ ), δ%

(+)
kl (ωγ ),

(
δ%

(−)
kl (ωγ )

)∗}
. (50)

Furthermore, xi(ωγ ) denotes the value calculated in the ith QFAM iteration. The goal is to obtain the same self-consistent value xi(ωγ ) =
xi+1(ωγ ) in two consecutive iterations, up to the given error tolerance. In the DIRQFAM code [1] the self-consistency was achieved by 
employing the modified Broyden’s method [11].

The input for the ith QFAM iteration are the values induced single-particle Hamiltonian and pairing field from the previous iteration 
and the following transformations are performed:

xi(ωγ )
1.−→

{
δH20

µν(ωγ ), δH02
µν(ωγ )

}
2.−→

{
Xµν(ωγ ), Yµν(ωγ )

} 3.−→
{
δρkl(ωγ ), δκ (±)

kl (ωγ )
}

4.−→
{
δρ(r,ωγ ), δ j(r,ωγ ), P (±)

Nz,Nr
(ωγ )

}
5.−→ xi+1(ωγ ). (51)

Following the formulae in our previous work [1], notice that steps 1., 3., 4. and 5. are linear transformations. For example, step 1. is a 
linear transformation performed by multiplying with Bogoliubov unitary matrix W , while the numerical integration in step 5. can also be 
written as a linear transformation. Only step 2. is affine transformation which is actually the QFAM equation:

Xµν(ωγ ) = −
(

F 20
µν(ωγ ) + δH20

µν(ωγ )
)

/(Eµ + Eν − ωγ ), (52)

Yµν(ωγ ) = −
(

F 02
µν(ωγ ) + δH02

µν(ωγ )
)

/(Eµ + Eν + ωγ ). (53)

If we set the residual interaction to zero, i.e., δH20
µν(ωγ ) = δH02

µν(ωγ ) = 0, and perform steps 2., 3., 4., and 5., we obtain the free response 
value xfree(ωγ ). Hence, the QFAM iteration (51) can be written as:

xi+1(ωγ ) = T (ωγ )xi(ωγ ) + xfree(ωγ ), (54)

where T (ωγ ) is a matrix describing the linear transformation induced by residual interaction which is ignored in free response. Size of 
the vector x(ωγ ), and consequently the order of matrix T (ωγ ), tends to be extremely large as the dimension of the configuration space 
increases. E.g. with only Nshells = 10 oscillator shells used in the expansion of the Dirac spinors, the size of the vector x(ωγ ) is ≈ 105, 
while for Nshells = 20 oscillator shells the size is ≈ 2 × 106. Despite its size, the vector xfree(ωγ ) is easy to calculate, while the calculation 
of the matrix T (ωγ ) can be prohibitively time consuming. However, the QFAM iteration (54) can be recognized as a means of calculating 
the mapping x &→

(
I −T (ωγ )

)
x, for finding the self-consistent solution:

(
I −T (ωγ )

)
x(ωγ ) = xfree(ωγ ). (55)

It turns out that the spectrum of the residual interaction matrix T (ωγ ) contains relatively small number of eigenvalues far from zero. 
This is because, for a given excitation operator, the residual interaction tends to excite only a mall subset of particle-hole pairs. Hence, 
the eigenvalues of the matrix I −T (ωγ ) are clustered around 1, with relatively small number of the eigenvalues is scattered around the 
complex plane away from 1.

As an illustration, we have calculated the matrix T (ωγ ) explicitly for deformed isotope 100Zr and J = 1, K = 0 isovector excitation 
operator. The ground state deformation is β ≈ 0.47 and we have used the DD-ME2 effective interaction and separable pairing [12,13]. 
However, we use only Nshells = 6 shells, otherwise it would be difficult to fit the matrix T (ωγ ) into the computer memory. In Fig. 3
we show the spectrum σ (I − T (ωγ )) for excitation frequency ωγ = 30 + 0.05i MeV. As we have anticipated, only a small fraction of 
eigenvalues are scattered away from 1. Motivated by the illustrative example shown in the previous subsection, this situation is well 
suited for the GMRES method, and thus in the DIRQFAM code we have substituted the previously used modified Broyden’s method with 
GMRES solver.

To demonstrate the superiority of the GMRES method in terms of convergence speed, we perform a calculation of the isovector J =
3, K = 1 response of 240Pu with deformed ground state β ≈ 0.28, where we use Nshells = 20 oscillator shells and smearing width γ = 0.05
MeV. Again, DD-ME2 interaction and separable pairing are used. We sweep across frequencies in range from 0 MeV to 50 MeV with an 
increment of 0.02 MeV. The response function is shown in Fig. 4 and it looks rather involved with many significant peaks. We compare 
the number of QFAM iterations performed by the modified Broyden’s method where 70 vectors are retained in Broyden’s history with the 
GMRES method using a maximum of 70 Arnoldi vectors. The same self-consistency tolerance is used in both methods. Modified Broyden’s 
method took a total of 364527 QFAM iterations, i.e. on the average 146 QFAM iterations per frequency, while GMRES took a total of 
107596 QFAM iterations,2 i.e. on the average 44 QFAM iterations per frequency. Thus, for this example, GMRES method required 3.4 times 

2 We have taken into the account additional two QFAM iterations needed in GMRES, one for finding b, and another for finding the final solution xn. We use x0 = 0 as 
initial guess and thus the initial Arnoldi vector is q1 = r0/‖r0‖ = b/‖b‖, i.e. q1 is given by b.

7
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Photoneutron cross section
1. 7 models including the microscopic RQRPA, SLO,

MLO et al. are utilized to estimate the photon
strength function and derive the gamma
absorption,

2. Quasi-deuteron dissociation model (QD) is
included to describe the (g,abs) in the larger
energy region;

3. Optical models for n,p,alpha,d,t,He-3 (KD
potential for n, p)

4. Equilibrium emission model (Gilbert-Cameron-
Cook-Ignatyuk, Su Zongdi modification)

5. Pre-equilibrium emission model (2p-2h state)

6. The emission particles include n,p,alpha,d,t,He-
3; First to eighteenth emission processes are
considered, more than 570 million reaction
channels are involved in GMEND below 200MeV
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MEND-G模型框架

1. 多种光子强度函数模型(SLO，MLO，SMLO，
RQPRA等)描述光子吸收截面，在能量较高
区域采用准氘模型(QD)描述光子吸收截面

2. 采用KD光学势作为中子、质子的光学势

3. 采用Gilber-Cameron-Cook-Ignatyuk(GCCI)能
级密度模型

4. 预平衡发射采用（2p-1h态）

5. 出射粒子包括n,p,alpha,d,t,3He

6. 能量范围可达200MeV，可计算18次粒子发
射，超过5亿个反应道。

Particles
emitted

Total num. of reactions

1 n,p,α,d,t,He-3 6
2 n,p,α,d,t,He-3 62=36
3 n,p,α,d,t,He-3 63=216
4 n,p,α,d,t,He-3 64=1296
5 n,p,α,d 64X4=5184
6 n,p,α,d 64X42=20736
7 n,p,α,d 64X43=82944
8 n,p,α 64X43X3=248832
9 n,p,α 64X43X32=746496
10 n,p,α 64X43X33=2239488
11 n,p 64X43X33X2=4478976
12 n,p 64X43X33X22=8957952
13 n,p 64X43X33X23=17915904
14 n,p 64X43X33X24=35831808
15 n,p 64X43X33X25=71663616
16 n,p 64X43X33X26=143327232
17 n,p 64X43X33X27=286654464
18 n,p 64X43X33X28=573308928
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Conclusion and outlook

1. Collect the latest experimental data and 
collaborate with Shanghai Laser Electron 
Gamma Source (SLEGS)  with measure new 
nuclear cross section data.

2. Improve the width calculation of DIRQFAM 
program，microscopic theoretical model 
can better describe the experiment.

3. Systematically study the effect of energy 
level density on (g,xn) cross section

4. Release new photonuclear reaction 
evaluation database of China
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Thank you for your 
attention !
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Theoretical prediction of Pygmy Quadrupole Resonance: N. Tsoneva, H. Lenske, Phys. Lett. B 695 (2011) 174. N.Tsoneva, ERICE14
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Photon Strength Function


