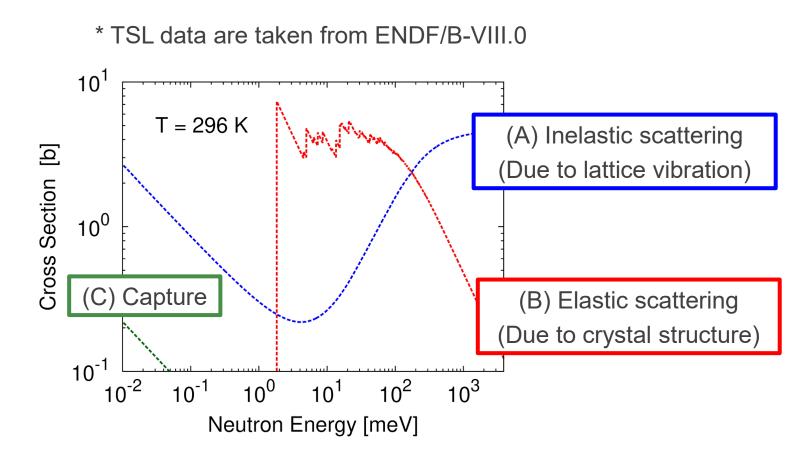
Evaluation of thermal neutron scattering law of nuclear-grade isotropic graphite

Shinsuke Nakayama^{1,*},

Osamu Iwamoto¹, and Atsushi Kimura¹

¹Nuclear Data Center, Japan Atomic Energy Agency (JAEA), Japan

This work was supported by MEXT Innovative Nuclear Research and Development Program


1. Introduction

- 2. Evaluation of inelastic scattering
- 3. Evaluation of elastic scattering
- 4. Summary and outlook

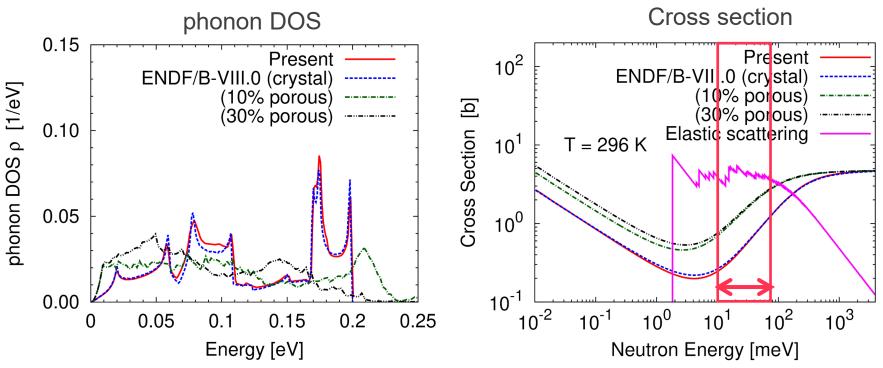
Introduction

- ✓ We have started a 3-year project entitled "Development of Nuclear Data Evaluation Framework for Innovative Reactor" in 2021.
- → The objective is to establish a scheme to improve the accuracy of nuclear data required in the development of innovative nuclear reactors within a short time period through collaboration between experiments and evaluations.
- ✓ Scattering and transmission experiments on nuclear-grade isotropic graphite in the meV region were conducted by Kimura et al. (presented at 3 p.m. Monday).
- ✓ Thermal neutron scattering law (TSL) data of isotropic graphite is evaluated considering the above experimental results.

Cross section of JENDL-5 for graphite (crystalline)

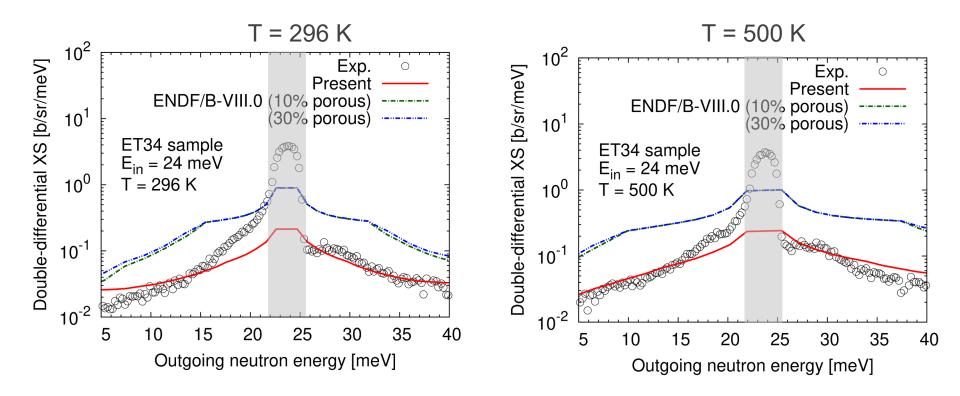
- ✓ Inelastic and (coherent) elastic components are the targets of evaluation.
- → Small-angle neutron scattering (SANS) due to structures larger than the crystal structure (pores and inter-grain voids) is discussed later.

- 1. Introduction
- 2. Evaluation of inelastic scattering
- 3. Evaluation of elastic scattering
- 4. Summary and outlook


Evaluation method of inelastic scattering

- ✓ Inelastic scattering component was evaluated by the theoretical calculation.
- 1. Compute the phonon density of states (DOS) with the first-principles lattice dynamics simulations.
- 2. Obtain TSL for inelastic scattering by processing the above DOS with the LEAPR module of NJOY-2016.
- ✓ Quantum ESPRESSO [1] was used for the first-principles calculation code.
- \rightarrow Perform first-principles simulations with pseudopotentials and plane-wave basis.

Conditions of first-principles simulation


- ✓ Although the target of evaluation is graphite with pores, the simulations were performed for ideal crystalline graphite.
- → The vacancies in graphite are larger than the crystals and other non-vacant region (where inelastic scattering occurs) are highly crystalline [1].
- → This contrasts with the modelling in ENDF/B-III.0 evaluation for nuclear-grade graphite (carbon atoms are randomly removed from crystalline graphite).
- Parameters having significant impact the results (e.g., pseudopotential, k-points mesh, plane wave cutoff energy) were determined with references the previous study on crystalline graphite [2].

Results of simulation

- ✓ The present results are close to the evaluated values for crystalline graphite of ENDF/B-VIII.0 (evaluated based on the first-principles simulations).
- ✓ The present results are largely different from the values for porous graphite.
- → It is difficult to judge which is better in the tens of meV region by comparison with the experimental total cross section.

Double-differential cross sections (E_{in} = 24 meV)

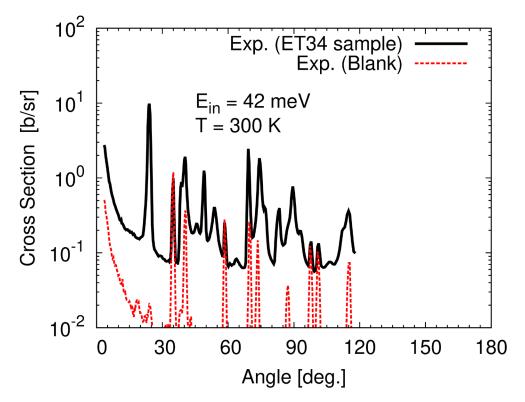
* The porosity of the sample in the experiment is approximately 11%.

- ✓ The present results for crystallin graphite reproduce the experimental data better than the evaluated values for porous graphite of ENDF/B-VIII.0.
- \rightarrow The regions in graphite where inelastic scattering occurs are highly crystalline.

- 1. Introduction
- 2. Evaluation of inelastic scattering
- 3. Evaluation of elastic scattering
- 4. Summary and outlook

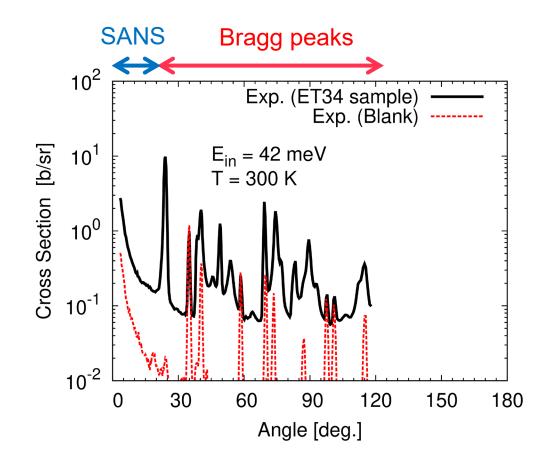
Evaluation method of elastic scattering

- The elastic scattering component is evaluated by the positions and intensities of the Bragg peaks.
- → Cross section and angular distribution are uniquely determined from the peak position and intensity.


$$\sigma(E,T) = \frac{1}{E} \sum_{i=1}^{E_i < E} s_i(T), \quad \frac{d\sigma}{d\Omega}(E,\mu,T) = \frac{1}{2\pi E} \sum_{i=1}^{E_i < E} s_i(T) \,\delta(\mu - \mu_i)$$

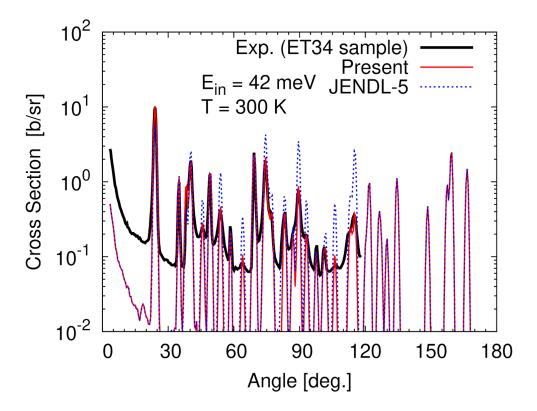
- *E* incident energy
- T temperature
- E_i *i*-th peak position (eV)
- *Si i-th* peak intensity (eV b)
- μ cosine of scattering angle

 $\left(\mu_i = 1 - \frac{2E_i}{E}\right)$


Differential cross section (E_{in} = 42 meV) (1)

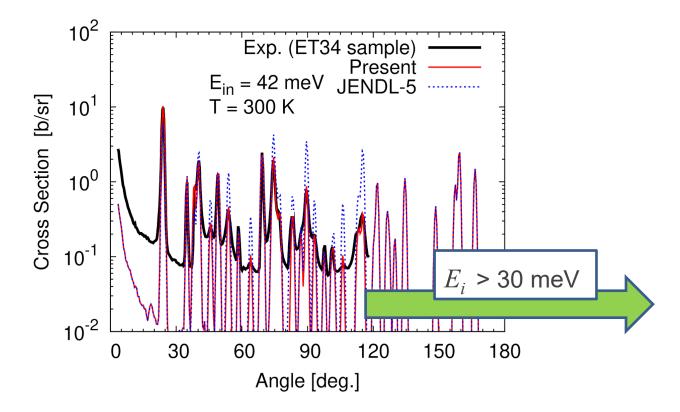
✓ The angular distributions of the neutron scattering experiments performed in this project were used to evaluate the Bragg peaks.

- ✓ Contributions from the aluminum container are seen in the blank measurement.
- \rightarrow Not negligible in evaluating the Bragg peaks of graphite sample.


Differential cross section (E_{in} = 42 meV) (1)

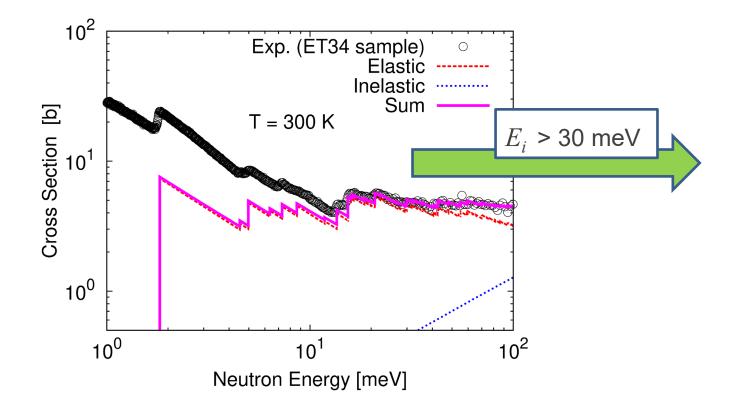
- ✓ Small angle neutron scattering (SANS) is seen in the most forward angles.
- \rightarrow This does not affect the evaluation of the Bragg peaks.

Differential cross section (E_{in} = 42 meV) (2)


 ✓ We compare the evaluated values (+ contribution from the aluminum container) with the experimental values.

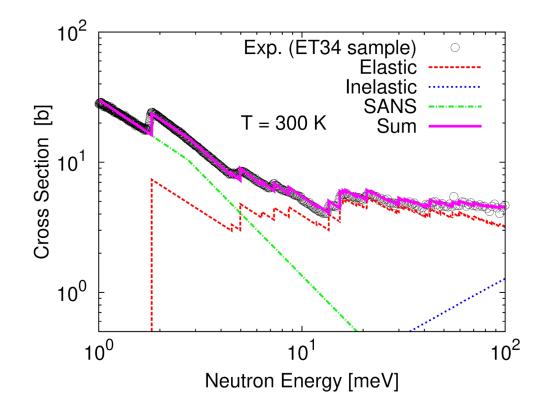
- ✓ JENDL-5 (=ENDF/B-VIII.0) data overestimate the present experimental data.
- → The intensities of the Bragg peaks were evaluated (positions were not changed).

Differential cross section (E_{in} = 42 meV) (2)


✓ In the present experiment, the data above 120° were not measured due to the limitation of equipment.

✓ Intensities at peak energies above 30 meV are unchanged at this stage.

Comparison with experimental total cross section


 Sum of evaluated inelastic and elastic scattering cross sections compared to the total cross sections measured in this project.

- ✓ The Bragg peak intensities above 30 meV were slightly adjusted.
- ✓ The evaluated values largely underestimate the experimental one below 10 meV.

Estimation of SANS component

 ✓ We estimate the small angle neutron scattering (SANS) components using the formulae proposed in the previous studies [1,2].

✓ By considering SANS, it is confirmed that the Bragg peak components below 30 meV are in good agreement also with the experimental total cross section.

[1] S. Petriw et al., J. Nucl. Mat. **396**, 181(2010). [2] K. Grammer et al., NIMA. **953**, 163226 (2020). **11**/13

- 1. Introduction
- 2. Evaluation of inelastic scattering
- 3. Evaluation of elastic scattering
- 4. Summary and outlook

Summary

- ✓ Thermal neutron scattering law (TSL) of isotropic graphite was evaluated considering the experimental results obtained in the project we have organized.
- ✓ Inelastic scattering was evaluated by the first-principles calculations for crystalline graphite, and the evaluated values reproduced the experimental data better than the ENDF/B-VIII.0 evaluation for reactor-grade (porous) graphite.
- ✓ Elastic scattering was evaluated based on the experimental data for angular distribution of outgoing neutron and total cross sections.
- → It was found that the quantification of small angle neutron scattering (SANS) is important in the comparison with total cross sections.

Outlook

- ✓ Compilation of the ENDF-6 formatted TSL file consisting of coherent elastic (Brag peaks) and inelastic scattering components.
- → SANS is not included since the official version of current nuclear data formats (ENDF-6, GNDS) have no place to store SANS.
- ✓ Derivation of inelastic scattering components from phonon density of states without incoherent approximation (assumed in NJOY).
- \rightarrow We plan to use OCLIMAX [1] instead of NJOY.
- \rightarrow Expected to improve data especially below a few meV.
- ✓ Evaluation of other samples used in the present experiment.