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Nuclear Criticality Safety Program (NCSP) Motivation: 

• NCSP Mission & Vision, 5-year plans: 
– https://ncsp.llnl.gov/sites/ncsp/files/2021-04/ncsp_mission_vision.pdf 
– https://ncsp.llnl.gov/program-management/ncsp-five-year-execution-plan 

I. Uncertainty Quantification
– Differential Nuclear Data (resolved resonance region (RRR) by SAMMY) 
– Integral Benchmark Experiments

II. SAMMY Modernization
– R-matrix formalism

https://ncsp.llnl.gov/sites/ncsp/files/2021-04/ncsp_mission_vision.pdf
https://ncsp.llnl.gov/program-management/ncsp-five-year-execution-plan
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Part I. Theory of evaluated nuclear data (ND) uncertainties

Common assumptions used in Bayesian ND evaluations:

1. Linearity: 
– all models are linear

2. Normality: 
– all probability distribution functions are normal, i.e., Gaussian

3. Perfection:
a) The model provides a perfect description of the measured data
b) The data are perfect and complete (including the covariances)
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These assumptions can now be selectively removed or enforced

• Linearity and Normality:
– Removed by, e.g., Metropolis Hastings 

Monte Carlo (MHMC); known as 
Bayesian Monte Carlo (BMC)

• Perfection:
– Evaluator can remove this assumption 

by specifying posterior expectation 
values and covariance of deviations 
between the model and data

New!

New!

Note: everything else being the same, consistency with Bayes’ theorem in this framework improves 
the likelihood of success.  Reliability of a given evaluation still depends on evaluator’s skill/expertise.

GLLS = Generalized Linear Least Squares
BMC = Bayesian Monte Carlo
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Illustrating a mechanism behind small evaluated uncertainties
• Example: suppose a large number (“N”) of identical measurements 

– Suppose measurements are identical in value as well as uncertainty
• This enables focus on evaluated covariance/uncertainty since the mean values are unaffected

– Suppose that the correlation among measurements is set to 0 
– Bayes’ theorem then yields uncertainty à 0 as N à infinity (illustrated below)

• Unrealistically small evaluated uncertainties are rectified by inflating them until reasonable
– The uncertainties are underestimated less apparently for any value of N

• Our Bayesian framework provides tools to address this problem.

N

…
mean value

N

…
mean value

Bayesian Prior Bayesian Posterior
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Conventional evaluation workflow is not completely Bayesian:

1. Evaluator uses expert judgment to align measured data sets before the evaluation
2. Bayesian evaluation is performed (implicitly) assuming perfect data and model 
3. Unrealistically small uncertainties are inflated manually afterwards

2. Data evaluation,
assuming PERFECT 
Data and Model.

1. Evaluator adjusts 
measured data sets 
until consistency

3. Inflate evaluated 
Uncertainties 

BayesianNot Bayesian Not Bayesian
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New framework enables completely Bayesian evaluations:

1. Evaluator estimates the effect of imperfections by setting Bayesian posterior 
expectation values of deviations as well as their covariances
– Deviation is defined as a difference between the evaluated data and model
– Evaluators’ expert judgment (or intuition) now formally recognized within Bayes’ theorem!

2. Bayesian evaluation is now determined by the deviations defined in 1. 
– No need to manually inflate evaluated uncertainties as in Step 3. previously

2. Data evaluation,
assuming IMPERFECT 
Data and Model.

1. Evaluator assesses imperfections 
by setting posterior expectation 
values of deviations

Bayesian
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Illustration cont’d.:

N

…
mean value

N

…
mean value

Bayesian Prior

Bayesian Posterior

N

…
mean value

Bayesian Posterior

Before:

After:

By virtue of setting NON-zero constraints
on the posterior covariance matrix of 
deviations between the model and data
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Assumptions or approximations used with Bayes’ Theorem

1. The model and the prior PDF of data are assumed to be perfect

2. The model is approximated by its 1st order (linear) expansion

3. Prior and posterior PDFs are approximated by normal PDFs.

where

�  {any constraints on posteriors imposed by evaluator},
�  {any parameters needed to define the prior PDF, p(z|�)}. (3)

and where N 0 is a normalization constant. In this manuscript we show that all
extant evaluations implicitly employ an extreme case of this constraint that often
yields unrealistically small uncertainties, and subsequent manual adjustment
of those uncertainties outside the domain of the Bayes’ theorem. To remedy
this, we derive formal mathematical framework for evaluators to finely control
the constraints on posteriors, while maintaining complete harmony with the
Bayes’ theorem. Prior and posterior expectation values of any function of z are
computed as integrals over z, weighted by a corresponding normalized PDF:

hf(z)i =
Z

f(z)p(z|�)dz and (4)

hf(z)i0 =
Z

f(z)p0(z|��)dz, (5)

respectively, where primes on expectation values indicate that posterior PDF,
p0(z|��), also denoted by a prime, has been used. For example, prior expectation
values of generalized data are obtained for f(z) = z:

hzi ⌘
✓
hP i
hDi

◆
, (6)

and the prior covariance matrix, C of generalized data is obtained for f(z) =
(z � hzi)(z � hzi)|, that is,

C ⌘ h(z � hzi)(z � hzi)|i, (7)

that is a 2⇥ 2 block matrix,

C =

✓
M W
W| V

◆
. (8)

If prior PDF is a normal PDF then �  (hzi,C), and

p(z|�) p(z|hzi,C) = N (hzi,C) =
1p

2⇡||C||
e�

1
2 (z�hzi)|C�1(z�hzi) (9)

A set of evaluator-defined constraints, �, imposed on the posterior expectation
values of some evaluator-defined function, �(z, T (·)), where T (·) represents a
model used for data evaluation, usually defined as T (·)  T (P ). In this work,
evaluator-defined constraints on posteriors are limited to h�(z, T (P ))i0, and its
posterior covariance matrix, �0. A particular form of a function �(z, T (P ))
is chosen by the evaluator to reflect some property of the evaluated data. A
generic form used in this work for illustration purposes is:

� ⌘ �(z, T (P )) ⌘ T (P )�D, (10)

2

whose prior and posterior expectation values are computed by setting f(z) = �,
but the constraint is imposed on the posterior expectation values only, i.e., on the
posterior PDF, such that h�i0 and �0 equal to the values imposed by evaluator.
On the other hand, prior expectation values of � and its prior covariance matrix,
�, are determined by the prior PDF, p(z|�), and are not constrained. (When
applied to line-fitting, �(T (P ), D) could be alternatively defined as the nearest
distance between each point in the data set, D, and the line defined by T(P).)
The posterior PDF is constrained by evaluator-defined posterior expectation
values, h�i0, and by constraining its posterior covariance matrix �0, that is,

�0 ⌘ h(� � h�i0)(� � h�i0)|i0, (11)

where posterior expectation values are indicated by primes.
Constraints on posterior expectation yields a likelihood function, expressed

in the following form in order to simplify the ensuing derivation

L(�|z, �) L(h�i0,�0|z, �) = e�
1
2 (���)|⇤�1(���) (12)

where the vector � and the matrix⇤ contain (constant) parameters whose values
are determined by the constraints on the posterior expectation values h�i0, and
the corresponding posterior covariance matrix, �’. Combining the prior PDF
and the likelihood function into Eq. (2) yields a posterior PDF of the form

p0(z|��) N 0L(h�i0,�0|z, �)⇥ p(z|�), (13)

that should be used to compute posterior expectation values of evaluated data,
hT (P )i0 and the corresponding covariance matrix.

Inserting a normal prior PDF specified by a prior mean values, hzi and the
prior covariance matrix, C, into Eq. (2) yields a posterior PDF of the form

p0(z|��) N 0L(h�i0,�0|z, hzi,C)⇥N (z|hzi,C), (14)

which is a special case of posterior PDF that will reveal a generalization of the
conventional cost function in the next Section.

All conventional evaluation methods implicitly set h�i0 = 0 and �0 = 0, for
which � = 0 and ⇤ = 0, so that L(h�i0,�0|z, hzi,C) = �Dirac(T (P ) � D), and
the posterior PDF becomes (after eliminating its dependence on data, D, by
integrating1 it over D)

p0(P |��) N 0N ((z|
D=T (P )

)|hzi,C), (15)

which leads to a conventional minimization of �2(P ) appearing in the exponent

of the normal PDF above, e��2(P )/2, i.e.,

�2(P ) = (z|
D=T (P )

� hzi)|C�1(z|
D=T (P )

� hzi). (16)

1The posterior PDF will still depend on hDi, since the integration of the posterior PDF
over D does not a↵ect prior expectation values, hDi, already present in the posterior PDF.

3

where

�  {any constraints on posteriors imposed by evaluator},
�  {any parameters needed to define the prior PDF, p(z|�)}. (3)

and where N 0 is a normalization constant. In this manuscript we show that all
extant evaluations implicitly employ an extreme case of this constraint that often
yields unrealistically small uncertainties, and subsequent manual adjustment
of those uncertainties outside the domain of the Bayes’ theorem. To remedy
this, we derive formal mathematical framework for evaluators to finely control
the constraints on posteriors, while maintaining complete harmony with the
Bayes’ theorem. Prior and posterior expectation values of any function of z are
computed as integrals over z, weighted by a corresponding normalized PDF:

hf(z)i =
Z

f(z)p(z|�)dz and (4)

hf(z)i0 =
Z

f(z)p0(z|��)dz, (5)

respectively, where primes on expectation values indicate that posterior PDF,
p0(z|��), also denoted by a prime, has been used. For example, prior expectation
values of generalized data are obtained for f(z) = z:

hzi ⌘
✓
hP i
hDi

◆
, (6)

and the prior covariance matrix, C of generalized data is obtained for f(z) =
(z � hzi)(z � hzi)|, that is,

C ⌘ h(z � hzi)(z � hzi)|i, (7)

that is a 2⇥ 2 block matrix,

C =

✓
M W
W| V

◆
. (8)

If prior PDF is a normal PDF then �  (hzi,C), and

p(z|�) p(z|hzi,C) = N (hzi,C) =
1p

2⇡||C||
e�

1
2 (z�hzi)|C�1(z�hzi) (9)

A set of evaluator-defined constraints, �, imposed on the posterior expectation
values of some evaluator-defined function, �(z, T (·)), where T (·) represents a
model used for data evaluation, usually defined as T (·)  T (P ). In this work,
evaluator-defined constraints on posteriors are limited to h�(z, T (P ))i0, and its
posterior covariance matrix, �0. A particular form of a function �(z, T (P ))
is chosen by the evaluator to reflect some property of the evaluated data. A
generic form used in this work for illustration purposes is:

� ⌘ �(z, T (P )) ⌘ T (P )�D, (10)

2

Bayesian Evaluation of Imperfect Generalized
Data

Jesse M. Brown
⇤
, Goran Arbanas

⇤
, Andrew Holcomb

⇤
, Dorothea Wiarda

⇤

July 8, 2021

Abstract

A new Bayesian evaluation framework enables evaluators to systemati-
cally control any imperfections in the data for the first time on a point-by-
point basis, while remaining in harmony with Bayes theorem throughout.
Data imperfections include, but are not limited to, inconsistent data, or
incomplete information on prior PDF of data or model parameters. The
framework introduces a new set of parameters evaluators may judiciously
use to moderate the e↵ect of imperfections in data, by defining a set
of posterior expectation values of deviations between the data and the
model predictions. The final outcome of such an evaluation is a Bayesian
posterior probability distribution function that should be used for calcu-
lation of any other posterior expectation values. Analytical solutions for
this framework are derived for linear models, and iterative solutions are
derived for non-linear models. It is demonstrated how this framework
converges toward the conventional �2-minimization evaluation method in
the limit vanishing imperfections. This framework can seamlessly include
integral benchmark experiments for simultaneous evaluations with (raw
and/or reduced) di↵erential data, and it reveals potentially useful ex-
tensions of Bayesian adjustment method implemented in the TSURFER
code.

1 Background and Notation

Generalized data vector, denoted by z, is a concatenation of parameter vector,
P , and data vector, D:

z ⌘
✓
P
D

◆
. (1)

Bayes theorem expresses the posterior probability function (PDF), p0(z|��), of
generalized data, z, as a product of the prior PDF, p(z|�), and the likelihood
function, L(�|z�),

p0(z|��) = p0(z|��) = N 0L(�|z�)⇥ p(z|�), (2)

1

whose prior and posterior expectation values are computed by setting f(z) = �,
but the constraint is imposed on the posterior expectation values only, i.e., on the
posterior PDF, such that h�i0 and �0 equal to the values imposed by evaluator.
On the other hand, prior expectation values of � and its prior covariance matrix,
�, are determined by the prior PDF, p(z|�), and are not constrained. (When
applied to line-fitting, �(T (P ), D) could be alternatively defined as the nearest
distance between each point in the data set, D, and the line defined by T(P).)
The posterior PDF is constrained by evaluator-defined posterior expectation
values, h�i0, and by constraining its posterior covariance matrix �0, that is,

�0 ⌘ h(� � h�i0)(� � h�i0)|i0, (11)

where posterior expectation values are indicated by primes.
Constraints on posterior expectation yields a likelihood function, expressed

in the following form in order to simplify the ensuing derivation

L(�|z, �) L(h�i0,�0|z, �) = e�
1
2 (���)|⇤�1(���) (12)

where the vector � and the matrix⇤ contain (constant) parameters whose values
are determined by the constraints on the posterior expectation values h�i0, and
the corresponding posterior covariance matrix, �’. Combining the prior PDF
and the likelihood function into Eq. (2) yields a posterior PDF of the form

p0(z|��) N 0L(h�i0,�0|z, �)⇥ p(z|�), (13)

that should be used to compute posterior expectation values of evaluated data,
hT (P )i0 and the corresponding covariance matrix.

Inserting a normal prior PDF specified by a prior mean values, hzi and the
prior covariance matrix, C, into Eq. (2) yields a posterior PDF of the form

p0(z|��) N 0L(h�i0,�0|z, hzi,C)⇥N (z|hzi,C), (14)

which is a special case of posterior PDF that will reveal a generalization of the
conventional cost function in the next Section.

All conventional evaluation methods implicitly set h�i0 = 0 and �0 = 0, for
which � = 0 and ⇤ = 0, so that L(h�i0,�0|z, hzi,C) = �Dirac(T (P ) � D), and
the posterior PDF becomes (after eliminating its dependence on data, D, by
integrating1 it over D)

p0(P |��) N 0N ((z|
D=T (P )

)|hzi,C), (15)

which leads to a conventional minimization of �2(P ) appearing in the exponent

of the normal PDF above, e��2(P )/2, i.e.,

�2(P ) = (z|
D=T (P )

� hzi)|C�1(z|
D=T (P )

� hzi). (16)

1The posterior PDF will still depend on hDi, since the integration of the posterior PDF
over D does not a↵ect prior expectation values, hDi, already present in the posterior PDF.
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• We recognize that 1. is equivalent to constraining the posterior 
expectation values of     , and of its covariance matrix, to 0:

For W = 0, that is, in the absence of any covariance between the model param-
eters, P , and data, D, it becomes:

�2(P ) (P � hP i)|M�1(P � hP i) + (T (P )� hDi)|V�1(T (P )� hDi). (17)

When the posterior PDF is a normal PDF, then the expectation values hP i0
are equal to the values P̂ that minimize �2, and, their corresponding posterior
covariance matrix, M̂, is evaluated at that minimum. Data evaluations are then
reported as T (P̂ ) and the corresponding covariance matrix is computed in linear
approximation as S|P̂M̂S||

P̂
, where S|P̂ are model sensitivities evaluated at P̂ .

The Bayesian evaluation framework for imperfect data empowers evaluators
to modify data points, one at a time, even when there may be multiple mea-
sured data of an identical quantity. This should be contrasted to modifying
an imperfect model when there are several measurements of a same quantity.
A simple model, T (P ) = P where P is a single scalar parameter, could be
used to illustrate the di↵erence between the two, for prior generalized data
hzi = (hP i, hDi) = (2, 1, 3). Then introducing an additive correction to account
for a model imperfection would a↵ect the model alone (while keeping the data
fixed), whereas accounting for data imperfections enables addressing imperfec-
tions at each data point, in this case hDi = (1, 3), while keeping the model
fixed.

2 Posterior PDF: linear models and normal PDFs

It is instructive to illustrate some of these concepts when the model, T (P ), is
a linear function of parameters, P , and when all PDFs are assumed to be nor-
mal, because of the simplifications this case a↵ords, and because the introduced
extensions to the conventional �2-minimization method are straightforward. A
generalized cost function is defined by collecting the exponents of the likelihood
function, and the prior PDF, on the right hand side of Eq. (14), to obtain

p(z|��) N 0e�
1
2X

2(z), (18)

where

X2(z) ⌘ (� � �)|⇤�1(� � �) + (z � hzi)|C�1(z � hzi) (19)

= X2(z)|
z=hzi0 + (z � hzi0)|C0�1(z � hzi0) (20)

where �  T (P )�D, and the (linear) model, T (P ), is assumed to be perfect, and
where � and ⇤ play a role of parameters whose values are to determined from
the constraints on the posterior expectation values h�i0 and �0 = h(��h�i0)(��
h�i0)|i0, and where N 0 = 1/

p
2⇡||C 0||.2 For linear models and normal PDFs

2Note that for � = 0 and in the limit ⇤ ! 0 the first term becomes a Dirac �-function
in (T (P ) � D), thanks to which data, D, can be straightforwardly integrated out, that is,
“marginalized”, and consequently D is to be replaced by the T (P ) in the second term, thus
yielding the conventional form of the cost function, known as �2.

4

For W = 0, that is, in the absence of any covariance between the model param-
eters, P , and data, D, it becomes:

�2(P ) (P � hP i)|M�1(P � hP i) + (T (P )� hDi)|V�1(T (P )� hDi). (17)

When the posterior PDF is a normal PDF, then the expectation values hP i0
are equal to the values P̂ that minimize �2, and, their corresponding posterior
covariance matrix, M̂, is evaluated at that minimum. Data evaluations are then
reported as T (P̂ ) and the corresponding covariance matrix is computed in linear
approximation as S|P̂M̂S||

P̂
, where S|P̂ are model sensitivities evaluated at P̂ .

The Bayesian evaluation framework for imperfect data empowers evaluators
to modify data points, one at a time, even when there may be multiple mea-
sured data of an identical quantity. This should be contrasted to modifying
an imperfect model when there are several measurements of a same quantity.
A simple model, T (P ) = P where P is a single scalar parameter, could be
used to illustrate the di↵erence between the two, for prior generalized data
hzi = (hP i, hDi) = (2, 1, 3). Then introducing an additive correction to account
for a model imperfection would a↵ect the model alone (while keeping the data
fixed), whereas accounting for data imperfections enables addressing imperfec-
tions at each data point, in this case hDi = (1, 3), while keeping the model
fixed.

2 Posterior PDF: linear models and normal PDFs

It is instructive to illustrate some of these concepts when the model, T (P ), is
a linear function of parameters, P , and when all PDFs are assumed to be nor-
mal, because of the simplifications this case a↵ords, and because the introduced
extensions to the conventional �2-minimization method are straightforward. A
generalized cost function is defined by collecting the exponents of the likelihood
function, and the prior PDF, on the right hand side of Eq. (14), to obtain

p(z|��) N 0e�
1
2X

2(z), (18)

where

X2(z) ⌘ (� � �)|⇤�1(� � �) + (z � hzi)|C�1(z � hzi) (19)

= X2(z)|
z=hzi0 + (z � hzi0)|C0�1(z � hzi0) (20)

where �  T (P )�D, and the (linear) model, T (P ), is assumed to be perfect, and
where � and ⇤ play a role of parameters whose values are to determined from
the constraints on the posterior expectation values h�i0 and �0 = h(��h�i0)(��
h�i0)|i0, and where N 0 = 1/

p
2⇡||C 0||.2 For linear models and normal PDFs

2Note that for � = 0 and in the limit ⇤ ! 0 the first term becomes a Dirac �-function
in (T (P ) � D), thanks to which data, D, can be straightforwardly integrated out, that is,
“marginalized”, and consequently D is to be replaced by the T (P ) in the second term, thus
yielding the conventional form of the cost function, known as �2.

4

• We remove 1. by letting evaluator choose values of         and

• 2. and 3. can be removed by Metropolis-Hastings Monte Carlo
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1The posterior PDF will still depend on hDi, since the integration of the posterior PDF
over D does not a↵ect prior expectation values, hDi, already present in the posterior PDF.
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Overview of approximations used by ORNL codes

Algorithm / Code <d>’ D’ Prior/Post PDF Cost Function Minimization
GLLS / SAMMY 0 0 Normal/Normal Chi2 Linear (iterative)
GLLS /TSURFER 0 0 Normal/Normal Chi2 Linear (single step)
Generalized GLLS Any Any Normal/Normal Generlized Chi2 Linear
BMC Any Any Any/any Posterior PDF MHMC
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3

Bayesian Evaluation of Imperfect Generalized
Data

Jesse M. Brown
⇤
, Goran Arbanas

⇤
, Andrew Holcomb

⇤
, Dorothea Wiarda

⇤

July 8, 2021

Abstract

A new Bayesian evaluation framework enables evaluators to systemati-
cally control any imperfections in the data for the first time on a point-by-
point basis, while remaining in harmony with Bayes theorem throughout.
Data imperfections include, but are not limited to, inconsistent data, or
incomplete information on prior PDF of data or model parameters. The
framework introduces a new set of parameters evaluators may judiciously
use to moderate the e↵ect of imperfections in data, by defining a set
of posterior expectation values of deviations between the data and the
model predictions. The final outcome of such an evaluation is a Bayesian
posterior probability distribution function that should be used for calcu-
lation of any other posterior expectation values. Analytical solutions for
this framework are derived for linear models, and iterative solutions are
derived for non-linear models. It is demonstrated how this framework
converges toward the conventional �2-minimization evaluation method in
the limit vanishing imperfections. This framework can seamlessly include
integral benchmark experiments for simultaneous evaluations with (raw
and/or reduced) di↵erential data, and it reveals potentially useful ex-
tensions of Bayesian adjustment method implemented in the TSURFER
code.

1 Background and Notation

Generalized data vector, denoted by z, is a concatenation of parameter vector,
P , and data vector, D:

z ⌘
✓
P
D

◆
. (1)

Bayes theorem expresses the posterior probability function (PDF), p0(z|��), of
generalized data, z, as a product of the prior PDF, p(z|�), and the likelihood
function, L(�|z�),

p0(z|��) = p0(z|��) = N 0L(�|z�)⇥ p(z|�), (2)

1

where

�  {any constraints on posteriors imposed by evaluator},
�  {any parameters needed to define the prior PDF, p(z|�)}. (3)

and where N 0 is a normalization constant. In this manuscript we show that all
extant evaluations implicitly employ an extreme case of this constraint that often
yields unrealistically small uncertainties, and subsequent manual adjustment
of those uncertainties outside the domain of the Bayes’ theorem. To remedy
this, we derive formal mathematical framework for evaluators to finely control
the constraints on posteriors, while maintaining complete harmony with the
Bayes’ theorem. Prior and posterior expectation values of any function of z are
computed as integrals over z, weighted by a corresponding normalized PDF:

hf(z)i =
Z

f(z)p(z|�)dz and (4)

hf(z)i0 =
Z

f(z)p0(z|��)dz, (5)

respectively, where primes on expectation values indicate that posterior PDF,
p0(z|��), also denoted by a prime, has been used. For example, prior expectation
values of generalized data are obtained for f(z) = z:

hzi ⌘
✓
hP i
hDi

◆
, (6)

and the prior covariance matrix, C of generalized data is obtained for f(z) =
(z � hzi)(z � hzi)|, that is,

C ⌘ h(z � hzi)(z � hzi)|i, (7)

that is a 2⇥ 2 block matrix,

C =

✓
M W
W| V

◆
. (8)

If prior PDF is a normal PDF then �  (hzi,C), and

p(z|�) p(z|hzi,C) = N (hzi,C) =
1p

2⇡||C||
e�

1
2 (z�hzi)|C�1(z�hzi) (9)

A set of evaluator-defined constraints, �, imposed on the posterior expectation
values of some evaluator-defined function, �(z, T (·)), where T (·) represents a
model used for data evaluation, usually defined as T (·)  T (P ). In this work,
evaluator-defined constraints on posteriors are limited to h�(z, T (P ))i0, and its
posterior covariance matrix, �0. A particular form of a function �(z, T (P ))
is chosen by the evaluator to reflect some property of the evaluated data. A
generic form used in this work for illustration purposes is:

� ⌘ �(z, T (P )) ⌘ T (P )�D, (10)

2

• Bayes’ theorem with arbitrary constraints:
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Generalized GLLS Framework in TSURFER notation
Using TSURFER-like notation:

𝑧 ≡ 𝛼
𝑚 	

&𝐶!! =
&𝐶"" &𝐶"#
&𝐶#" &𝐶##

	

&𝑆 ≡ ∇! &𝑑$ =
∇"
∇#

𝑘 𝛼 − 𝑚 $

&𝐶!!!!
%& = &𝑆 &𝐶'!'!

%& − &𝐶''%&
	 &𝑆$ + &𝐶!!%&

= ∇"𝑘 𝛼 $

−∇#𝑚$ =
&𝑆)"$
−𝕀

	 , (𝕀 =identity matrix)

𝑧* = 𝑧 + &𝐶!! &𝑆 &𝐶''%&( &𝑑* − &𝑑)

𝛼 = nuclear data
𝑚 = measured response
𝑑 = 𝑘 𝛼 −𝑚 

= implicitly assumed 0 in TSURFER

&𝐶'' = &𝑆 &𝐶!! &𝑆

Note: SAMMY uses the GLLS iteratively, by 
re-computing sensitivities in each iteration, 
as a way to approximately account for 
non-linearity of the R-matrix formalism.
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Benefits of a generalized form of the Bayes’ Theorem (BT):
• It could improve evaluations of any data, separately or jointly
– differential cross sections (SAMMY), 
– integral benchmarks (TSURFER/SAMPLER), …

• Enables Bayesian Monte Carlo evaluation of large data sets
– Useful for, e.g., TSL evaluations of SNS data, RRR, …

• Enables Bayesian evaluation of:
– inconsistent data sets, and/or
– defective model

• Conventional BT is recovered when imperfections made to vanish
– A seamless connection to the BT in SAMMY/TSURFER/SAMPLER

• API implementation in the SCALE code system
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For more information on uncertainty evaluation consider:
• ORNL/TM-2022/2448 Technical Report
– Brown, Jesse M., Arbanas, Goran, Wiarda, Dorothea, and Holcomb, 

Andrew, “Bayesian Optimization Framework for Imperfect Data or 
Models”. United States: 2022. https://doi.org/10.2172/1874643.

• ANS Winter Meeting 2022:
– Jesse M. Brown, Goran Arbanas, Hany Abdel-Khalik, Ugur Mertyurek, 

William B. Marshall, William A. Wieselquist, “Generalized Bayesian 
Framework for Evaluation of Integral Benchmark Experiments”, 
Transactions, Volume 125, Number 1, December 2021, Pages 691-694.

• ND 2022:
– Jesse M. Brown, Goran Arbanas, Andrew Holcomb, Dorothea Wiarda, 

“Bayesian Evaluation Framework for Imperfect 233U Data and Models”, 
Proceedings of the 15. Int.’l Conference on Nuclear Data for Science and 
Technology (ND2022), Sacramento, California, 21-29 Jul 2022.

https://doi.org/10.2172/1874643
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Part II.  R-matrix formalism: Background and Outline

• Classes of nuclear reaction processes, by increasing complexity: 
1. Direct: direct channel coupling, direct capture, …
2. Doorway: Giant Dipole Resonance, Isobar Analogue Resonance, 2p1h, ...
3. Compound: narrow resonances of the Resolved Resonance Region 

• Only the compound kind parameterized in the extant R-matrix

• New R-matrix parameterization of direct and doorway processes
– Direct: parameterized exactly, using an idea suggested by Wigner [8]
– Doorway: parameterized analogously to a corresponding K-matrix way [1] 

• R-matrix formalism for evaluations rediagonalizes parameterization 
of any many body Hamiltonian, obviating the need for doorways:
– Elimination of capture channels yields complex resonance energies, widths 
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Non-resonant (or external) direct reactions in R-matrix

• Direct channel coupling is introduced by mixing among channels 
of the incoming,   , and the outgoing,    , formerly diagonal 
matrices of wave functions:

standard scattering matrix of the phenomenological R-matrix formalism (which accounts
for resonance only) given in a conventional form by Lane and Thomas [3]:

UR = ⌦W⌦, (3)

where
W = P

1
2 (1�RL

0)�1(1�RL
0⇤)P� 1

2 , (4)

 = Ox+ Iy (5)

where

I  IM (6)

O  OM (7)

I  IMD (8)

O  OMD (9)

and

Icc0 = Ic�cc0 (10)

Occ0 = Oc�cc0 (11)

where Ic and Oc are the incoming and outgoing Coulomb wave functions, and matrix M

parameterizes channel-mixing due to direct, that is, non-resonant, reactions [7]. For time-
reversal invariant reactions total scattering matrix UD+R must be symmetric, and therefore
M must be orthogonal, since UR is already symmetric, i.e., time-reversal invariant. Matrix
M computed by distorted wave approximations (DWA) of direct reactions is orthogonal
and therefore time-reversal symmetry preserving. In the context of R-matrix formalism, E.
Wigner refers to direct reactions as “peripheral” since they take place outside the sphere de-
fined by the R-matrix channel radius [8]. The cross section corresponding to the eliminated
channels is proportional to the deviation from unitarity of the eliminated channel S-matrix,
so that the sum of cross sections corresponding to retained and eliminated channels equals
the total cross section computed directly from the reduced S-matrix.

4 Parameterization of Doorway-modulated reactions

A formally exact R-matrix parameterization (of the resonant part) of the scattering matrix
in the presence of doorway states is derived by taking advantage of:

3
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3

3. A corresponding Reich-Moore approximation of eliminated radiative capture channels
is parameterized by: a) introducing finite negative2 values for diagonal elements of
a reduced form of matrix ⌘ (reduced to the retained, that is, particle channels), b)
introducing a (doorway) capture width to each doorway state energy, and c) by
adding a (CN) capture width to each CN resonance energy as is already done in
conventional Reich-Moore approximation [5]. For example, in thermal neutron energy
range one may retain just the s-wave neutron channel, and then parameterize (now
scalar) ⌘ = ��k, where k is the momentum wave-number of the incoming neutron
in the center of mass frame. In this parameterization ⌘ contributes to the imaginary
part of the (s-wave) scattering length, as, which determines the thermal neutron
capture cross section, �� = 4⇡=(as)/k. The advantage of this parameterization is
that it preserves quantum interference e↵ects among direct, doorway, and CN capture
processes.

We will show evidence for direct and doorway reactions observed in recent measurements of
resolved resonance cross sections at the Gaerttner LINAC Center at Rensselaer Polytechnic
Institute, and will outline a path for implementing this new parameterization into the
SAMMY nuclear data evaluation code [4].

2 Introduction

Although a phenomenological R-matrix formalism has been used extensively for nuclear
data evaluations of resolved resonance nucleon-nucleus cross sections, direct reactions have
not yet been parameterized in a consistent formalism that would account for the distinct
nature of direct reactions, including direct capture. In a so-called “hybrid” R-matrix for-
malism direct reactions are accounted via distant resonances that have no physical meaning
besides serving to parameterize the e↵ect of direct reactions in the energy range of interest...

3 Theory

In order to derive the following expression for the total scattering matrix for direct (D)
and resonant (R) reactions UD+R

U  M
�1

UM (1)

UD+R = M
�1
D URMD (2)

where matrix M parameterizes channel-mixing due to direct channel coupling reactions,
that is, all non-resonant reactions, including direct radiative capture, and where UR is the

2In anticipation of the loss of neutron flux into the eliminated capture channels.

2

where       is a unitary matrix parameterizing direct reactions.  
A corresponding scattering matrix      is then found to be:

Suggested by Wigner in a paper on generalized Euler angles [8].

expressed as

R = �|Q �, (3)
Q�1 = e � E1, (4)

where e is a (N� ⇥ N�) diagonal matrix of CN level ener-
gies, � is a (N� ⇥ Nc) matrix of resonance reduced width
amplitudes (RWAs), N� is the number of CN levels, and
the elements of e and � are real parameters independent of
energy, E. The collision matrix, W, in Eq. (2) can also be
expressed as

W = 1 + 2 i P
1
2 �|A� P

1
2 , (5)

where A is a (N� ⇥N�) level matrix expressed2 in terms of
the R-matrix parameters as

A�1 = Q�1 � � (L � B) �|. (6)

Direct processes are introduced into R-matrix formal-
ism in Section 2, doorway processes in Section 3, RMA of
eliminated capture channels in the presence of direct and
doorway process in Section 4, and the extension of Brune
transform to doorway states in Section 5. Further exten-
sions of R-matrix formalism enabled by these results are
outlined in the conclusion.

2 Direct Processes in R-matrix Formalism

Direct reaction channel coupling in the R-matrix exterior

suggested by Wigner [15] can be parameterized by a uni-

tary matrix, M�1 = M† ⌘ (M⇤)|, that mixes the coef-
ficients of the incoming, y, and outgoing, x, asymptotic
channel wave function,  = Iy + Ox, at the R-matrix sur-

face as
y M y and x M⇤ x. (7)

Substituting these into the R-matrix expression defining
the scattering matrix, x = �U y, yields M⇤x = �UM y;
multiplying both sides by M| yields a unitary and sym-
metric3 scattering matrix modified for direct processes as

UM = M|UM, (8)

where U in Eq. (8) retains the form given by Eqs. (1–4).
A slow energy variation of matrix elements ofM over

the energy scale on the order of optical potential single-
particle resonance width—that is, 1 MeV—may be ex-
pected, suggesting that direct processes in the R-matrix
interior could be parameterized by adapting the method
of Section 3. An optimal form of parameterization could
depend on the nature of a nuclear reaction. For example,
unitaryM can be parameterized by a Hermitian matrix �
viaM = exp[�i�]. Similarly, an orthonormal4 matrix may
be parameterized by a skew-symmetric � asM = exp[�].

Consistent R-matrix parameterization of direct pro-
cesses introduced in this section and of doorway and CN

2The fact that the expression in Eq. (6) holds for any real symmetric
matrix e is used in the generalized RMA in Section 4 and for alternative
R-matrix parameterization in Section 5.

3See Section VI.2.a,b of [1] for more information.
4It is an R-matrix analogue for the orthonormal matrix (computed via

distorted wave approx.) in Eq. (III.2.26) of [5] in T -matrix formalism.

processes in the next section enable a seamless quantum
mechanical formalism for interference5 among the three
classes of processes in all channels, as illustrated by an
expression for the scattering length in Section 4.

3 Doorway States in R-matrix Formalism

A simple way to infer parameterization of doorway and
CN processes in a phenomenological R-matrix is to cast
the R-matrix resonance RWAs and energies in Eqs. (3) and
(4), respectively, into an equivalent operator form as

� = h� | ci, (9)
e = h� |H0 |�i, (10)

respectively, where | ci and |�i are the eigenvectors of
(channel radius sphere) surface and interior states, respec-
tively, and H0 is a Hamiltonian of the interior [5].

The interior Hilbert space, |�i, is to be delineated into
a subspace of compound nuclear states, |qi, and a sub-
space of doorway states, |di, orthogonal to it, hd |⌦|qi = 0.
This can be achieved by making a formal substitution6,

h� | 
 
hd |
hq |

!
, (11)

in Eqs. (9) and (10) to obtain the following generalizations
of � and e for use in Eq. (3) and Eq. (4), respectively7:

� 
 
�d

�q

!
, where (12)

�d ⌘ hd | ci and �q ⌘ hq | ci (13)

are the RWA matrices of doorway and CN states, respec-
tively, and

e 
 
ed u
u| eq

!
, 1 

 
1d 0
0| 1q

!
, (14)

where8

u ⌘ hd |H |qi, ed ⌘ hd |H |di, eq ⌘ hq |H |qi, (15)

are a doorway–CN level coupling strength matrix, fol-
lowed by diagonal matrices of doorway and CN level en-
ergies, respectively. Although ed and eq are diagonal, a
(2 ⇥ 2) block matrix e is not because of the non-vanishing
o↵-diagonal blocks u and u|. The R- and A-matrix in
Eqs. (3) and (6), respectively, attain a 2 ⇥ 2 block matrix
structure due to Eqs. (12, 14). All matrix elements of e (in-
cluding those of its constituent u) and � remain real-valued
and independent of energy, E.

A projection of the R-matrix interior Hilbert space by
Eq. (11) was inspired by Feshbach’s projector operator for-
malism [5], and it turns out to be particularly simple be-
cause it is applied to a denominator

9 of the Q-matrix, in-
stead of the R-matrix, that is, the Green’s function [6, 7].

5This interference may be constructive or destructive.
6The choice of the letters “d” and “q” to label doorway and compound

level subspaces is borrowed from [5–7].
7Matrix subscripts (d, q, ...) serve as labels rather than indices.
8A two-nucleon component of a nuclear Hamiltonian can induce a

chain of linked subspaces of increasing number of particle-holes [16].
9More specifically, the matrix e inside the denominator.
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Direct processes are introduced into R-matrix formal-
ism in Section 2, doorway processes in Section 3, RMA of
eliminated capture channels in the presence of direct and
doorway process in Section 4, and the extension of Brune
transform to doorway states in Section 5. Further exten-
sions of R-matrix formalism enabled by these results are
outlined in the conclusion.
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suggested by Wigner [15] can be parameterized by a uni-

tary matrix, M�1 = M† ⌘ (M⇤)|, that mixes the coef-
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channel wave function,  = Iy + Ox, at the R-matrix sur-

face as
y M y and x M⇤ x. (7)

Substituting these into the R-matrix expression defining
the scattering matrix, x = �U y, yields M⇤x = �UM y;
multiplying both sides by M| yields a unitary and sym-
metric3 scattering matrix modified for direct processes as

UM = M|UM, (8)

where U in Eq. (8) retains the form given by Eqs. (1–4).
A slow energy variation of matrix elements ofM over

the energy scale on the order of optical potential single-
particle resonance width—that is, 1 MeV—may be ex-
pected, suggesting that direct processes in the R-matrix
interior could be parameterized by adapting the method
of Section 3. An optimal form of parameterization could
depend on the nature of a nuclear reaction. For example,
unitaryM can be parameterized by a Hermitian matrix �
viaM = exp[�i�]. Similarly, an orthonormal4 matrix may
be parameterized by a skew-symmetric � asM = exp[�].

Consistent R-matrix parameterization of direct pro-
cesses introduced in this section and of doorway and CN

2The fact that the expression in Eq. (6) holds for any real symmetric
matrix e is used in the generalized RMA in Section 4 and for alternative
R-matrix parameterization in Section 5.

3See Section VI.2.a,b of [1] for more information.
4It is an R-matrix analogue for the orthonormal matrix (computed via

distorted wave approx.) in Eq. (III.2.26) of [5] in T -matrix formalism.

processes in the next section enable a seamless quantum
mechanical formalism for interference5 among the three
classes of processes in all channels, as illustrated by an
expression for the scattering length in Section 4.
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A simple way to infer parameterization of doorway and
CN processes in a phenomenological R-matrix is to cast
the R-matrix resonance RWAs and energies in Eqs. (3) and
(4), respectively, into an equivalent operator form as

� = h� | ci, (9)
e = h� |H0 |�i, (10)

respectively, where | ci and |�i are the eigenvectors of
(channel radius sphere) surface and interior states, respec-
tively, and H0 is a Hamiltonian of the interior [5].

The interior Hilbert space, |�i, is to be delineated into
a subspace of compound nuclear states, |qi, and a sub-
space of doorway states, |di, orthogonal to it, hd |⌦|qi = 0.
This can be achieved by making a formal substitution6,
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are a doorway–CN level coupling strength matrix, fol-
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(2 ⇥ 2) block matrix e is not because of the non-vanishing
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and independent of energy, E.

A projection of the R-matrix interior Hilbert space by
Eq. (11) was inspired by Feshbach’s projector operator for-
malism [5], and it turns out to be particularly simple be-
cause it is applied to a denominator

9 of the Q-matrix, in-
stead of the R-matrix, that is, the Green’s function [6, 7].

5This interference may be constructive or destructive.
6The choice of the letters “d” and “q” to label doorway and compound

level subspaces is borrowed from [5–7].
7Matrix subscripts (d, q, ...) serve as labels rather than indices.
8A two-nucleon component of a nuclear Hamiltonian can induce a

chain of linked subspaces of increasing number of particle-holes [16].
9More specifically, the matrix e inside the denominator.
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• Its analogue in the T-matrix by H. Feshbach in Eq. (III.2.26) of [7] is 
an example of similarities among R-, T-, K-matrix formalisms.
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Introducing doorway states into R-matrix formalism

• Generalized R-matrix parameterization of doorway states (“d”):
– Comparison of formal expressions for doorway state K-matrix (derived by 

Feshbach’s projection operator formalism [1,2]) to the Brune’s alternative 
R-matrix [9] has helped uncover an analogous R-matrix parameterization 
(using a simple derivation shown on the next slide): 

neutron

channel 
radius

Direct channel
reactions outside
the channel radius

Interior (bound) states:
Doorway (“d”)
Compound (“q”)

(This is another example of leveraging similarities among the R-, T-, K-matrix formalisms.)
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5 Reich-Moore Approximation

In addition to the approximations used to derive the conventional Reich-Moore approxima-
tion, when simultaneously eliminating direct and doorway capture (in addition to eliminat-
ing the CN resonant capture too), we have to also invoke a linear approximation, in order to
simultaneously eliminate capture channels for direct, doorway, and CN resonant processes.
(This may preclude the preservation of exact total capture cross section, preserved by the
generalized Reich-Moore approximation [6]).
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In addition to the approximations used to derive the conventional Reich-Moore approxima-
tion, when simultaneously eliminating direct and doorway capture (in addition to eliminat-
ing the CN resonant capture too), we have to also invoke a linear approximation, in order to
simultaneously eliminate capture channels for direct, doorway, and CN resonant processes.
(This may preclude the preservation of exact total capture cross section, preserved by the
generalized Reich-Moore approximation [6]).
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where �d is a matrix of doorway state widths (analogous to the matrix of compound
resonant widths, �), ed is a diagonal matrix of doorway state characteristic energy values
(analogous to the diagonal matrix of compound nuclear resonance energies, e), and V is a
matrix of coupling strengths between doorway states and compound resonant states and
is of the same dimensions as �d, namely, #(doorways) by #(channels).
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4 Parameterization of Doorway-modulated reactions

A formally exact R-matrix parameterization (of the resonant part) of the scattering matrix
in the presence of doorway states is derived by taking advantage of:

1. a direct connection to the K-matrix formalism [6, 1] enabled by the Brune’s alterna-
tive parameterization of the R-matrix [9], and

2. the formally exact expressions for doorway-projected K-matrix derived by de Toledo
Piza and Kerman [1] using Feshbach’s projection operators [7].
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d � ṽ|Q̃qṽ

(�̃d + ṽ
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5 Reich-Moore Approximation

In addition to the approximations used to derive the conventional Reich-Moore approxima-
tion, when simultaneously eliminating direct and doorway capture (in addition to eliminat-
ing the CN resonant capture too), we have to also invoke a linear approximation, in order to
simultaneously eliminate capture channels for direct, doorway, and CN resonant processes.
(This may preclude the preservation of exact total capture cross section, preserved by the
generalized Reich-Moore approximation [6]).
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d ṽL

ṽ
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In addition to the approximations used to derive the conventional Reich-Moore approxima-
tion, when simultaneously eliminating direct and doorway capture (in addition to eliminat-
ing the CN resonant capture too), we have to also invoke a linear approximation, in order to
simultaneously eliminate capture channels for direct, doorway, and CN resonant processes.
(This may preclude the preservation of exact total capture cross section, preserved by the
generalized Reich-Moore approximation [6]).
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where matrix M parameterizes channel-mixing due to direct channel coupling reactions,
that is, all non-resonant reactions, including direct radiative capture, and where UR is the
standard scattering matrix of the phenomenological R-matrix formalism (which accounts
for resonance only) given in a conventional form by Lane and Thomas [3]:
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4 Parameterization of Doorway-modulated reactions

A formally exact R-matrix parameterization (of the resonant part) of the scattering matrix
in the presence of doorway states is derived by taking advantage of:

1. a direct connection to the K-matrix formalism [?, ?] enabled by the Brune’s alterna-
tive parameterization of the R-matrix [?], and

2. the formally exact expressions for doorway-projected K-matrix derived by de Toledo
Piza and Kerman [?] using Feshbach’s projection operators [?].

and where the true K-matrix of de Toledo Piza and Kerman in a (channel) matrix notation
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Doorway state parameterization in conventional R-matrix [3] 

•        : a 2x2 block matrix of expectation values of projected
– The projected R-matrix is simpler than the projected T-,K-matrix in [1, 2]

•                      is a doorway-compound coupling parameter matrix

• Doorway states are far fewer and wider than compound states
– The new doorway R-matrix parameters are:       ,       , and
– Extensible to multistep reactions by adding new subspaces into 

•   Single-particle resonances for direct processes, 3p2h for ”hallway” states, …, CN.
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Ṽ = Ṽ0 + i�̃dP �̃
|
q (56)

Q̃
�1 =

✓
Q̃

�1
d �Ṽ0
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5 Reich-Moore Approximation

In addition to the approximations used to derive the conventional Reich-Moore approxima-
tion, when simultaneously eliminating direct and doorway capture (in addition to eliminat-
ing the CN resonant capture too), we have to also invoke a linear approximation, in order to
simultaneously eliminate capture channels for direct, doorway, and CN resonant processes.
(This may preclude the preservation of exact total capture cross section, preserved by the
generalized Reich-Moore approximation [6]).
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expressed as

R = �|Q �, (3)
Q�1 = e � E1, (4)

where e is a (N� ⇥ N�) diagonal matrix of CN level ener-
gies, � is a (N� ⇥ Nc) matrix of resonance reduced width
amplitudes (RWAs), N� is the number of CN levels, and
the elements of e and � are real parameters independent of
energy, E. The collision matrix, W, in Eq. (2) can also be
expressed as

W = 1 + 2 i P
1
2 �|A� P

1
2 , (5)

where A is a (N� ⇥N�) level matrix expressed2 in terms of
the R-matrix parameters as

A�1 = Q�1 � � (L � B) �|. (6)

Direct processes are introduced into R-matrix formal-
ism in Section 2, doorway processes in Section 3, RMA of
eliminated capture channels in the presence of direct and
doorway process in Section 4, and the extension of Brune
transform to doorway states in Section 5. Further exten-
sions of R-matrix formalism enabled by these results are
outlined in the conclusion.

2 Direct Processes in R-matrix Formalism

Direct reaction channel coupling in the R-matrix exterior

suggested by Wigner [15] can be parameterized by a uni-

tary matrix, M�1 = M† ⌘ (M⇤)|, that mixes the coef-
ficients of the incoming, y, and outgoing, x, asymptotic
channel wave function,  = Iy + Ox, at the R-matrix sur-

face as
y M y and x M⇤ x. (7)

Substituting these into the R-matrix expression defining
the scattering matrix, x = �U y, yields M⇤x = �UM y;
multiplying both sides by M| yields a unitary and sym-
metric3 scattering matrix modified for direct processes as

UM = M|UM, (8)

where U in Eq. (8) retains the form given by Eqs. (1–4).
A slow energy variation of matrix elements ofM over

the energy scale on the order of optical potential single-
particle resonance width—that is, 1 MeV—may be ex-
pected, suggesting that direct processes in the R-matrix
interior could be parameterized by adapting the method
of Section 3. An optimal form of parameterization could
depend on the nature of a nuclear reaction. For example,
unitaryM can be parameterized by a Hermitian matrix �
viaM = exp[�i�]. Similarly, an orthonormal4 matrix may
be parameterized by a skew-symmetric � asM = exp[�].

Consistent R-matrix parameterization of direct pro-
cesses introduced in this section and of doorway and CN

2The fact that the expression in Eq. (6) holds for any real symmetric
matrix e is used in the generalized RMA in Section 4 and for alternative
R-matrix parameterization in Section 5.

3See Section VI.2.a,b of [1] for more information.
4It is an R-matrix analogue for the orthonormal matrix (computed via

distorted wave approx.) in Eq. (III.2.26) of [5] in T -matrix formalism.

processes in the next section enable a seamless quantum
mechanical formalism for interference5 among the three
classes of processes in all channels, as illustrated by an
expression for the scattering length in Section 4.

3 Doorway States in R-matrix Formalism

A simple way to infer parameterization of doorway and
CN processes in a phenomenological R-matrix is to cast
the R-matrix resonance RWAs and energies in Eqs. (3) and
(4), respectively, into an equivalent operator form as

� = h� | ci, (9)
e = h� |H0 |�i, (10)

respectively, where | ci and |�i are the eigenvectors of
(channel radius sphere) surface and interior states, respec-
tively, and H0 is a Hamiltonian of the interior [5].

The interior Hilbert space, |�i, is to be delineated into
a subspace of compound nuclear states, |qi, and a sub-
space of doorway states, |di, orthogonal to it, hd |⌦|qi = 0.
This can be achieved by making a formal substitution6,

h� | 
 
hd |
hq |

!
, (11)

in Eqs. (9) and (10) to obtain the following generalizations
of � and e for use in Eq. (3) and Eq. (4), respectively7:

� 
 
�d

�q

!
, where (12)

�d ⌘ hd | ci and �q ⌘ hq | ci (13)

are the RWA matrices of doorway and CN states, respec-
tively, and

e 
 
ed u
u| eq

!
, 1 

 
1d 0
0| 1q

!
, (14)

where8

u ⌘ hd |H |qi, ed ⌘ hd |H |di, eq ⌘ hq |H |qi, (15)

are a doorway–CN level coupling strength matrix, fol-
lowed by diagonal matrices of doorway and CN level en-
ergies, respectively. Although ed and eq are diagonal, a
(2 ⇥ 2) block matrix e is not because of the non-vanishing
o↵-diagonal blocks u and u|. The R- and A-matrix in
Eqs. (3) and (6), respectively, attain a 2 ⇥ 2 block matrix
structure due to Eqs. (12, 14). All matrix elements of e (in-
cluding those of its constituent u) and � remain real-valued
and independent of energy, E.

A projection of the R-matrix interior Hilbert space by
Eq. (11) was inspired by Feshbach’s projector operator for-
malism [5], and it turns out to be particularly simple be-
cause it is applied to a denominator

9 of the Q-matrix, in-
stead of the R-matrix, that is, the Green’s function [6, 7].

5This interference may be constructive or destructive.
6The choice of the letters “d” and “q” to label doorway and compound

level subspaces is borrowed from [5–7].
7Matrix subscripts (d, q, ...) serve as labels rather than indices.
8A two-nucleon component of a nuclear Hamiltonian can induce a

chain of linked subspaces of increasing number of particle-holes [16].
9More specifically, the matrix e inside the denominator.
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particle resonance width—that is, 1 MeV—may be ex-
pected, suggesting that direct processes in the R-matrix
interior could be parameterized by adapting the method
of Section 3. An optimal form of parameterization could
depend on the nature of a nuclear reaction. For example,
unitaryM can be parameterized by a Hermitian matrix �
viaM = exp[�i�]. Similarly, an orthonormal4 matrix may
be parameterized by a skew-symmetric � asM = exp[�].

Consistent R-matrix parameterization of direct pro-
cesses introduced in this section and of doorway and CN

2The fact that the expression in Eq. (6) holds for any real symmetric
matrix e is used in the generalized RMA in Section 4 and for alternative
R-matrix parameterization in Section 5.

3See Section VI.2.a,b of [1] for more information.
4It is an R-matrix analogue for the orthonormal matrix (computed via

distorted wave approx.) in Eq. (III.2.26) of [5] in T -matrix formalism.

processes in the next section enable a seamless quantum
mechanical formalism for interference5 among the three
classes of processes in all channels, as illustrated by an
expression for the scattering length in Section 4.

3 Doorway States in R-matrix Formalism

A simple way to infer parameterization of doorway and
CN processes in a phenomenological R-matrix is to cast
the R-matrix resonance RWAs and energies in Eqs. (3) and
(4), respectively, into an equivalent operator form as

� = h� | ci, (9)
e = h� |H0 |�i, (10)

respectively, where | ci and |�i are the eigenvectors of
(channel radius sphere) surface and interior states, respec-
tively, and H0 is a Hamiltonian of the interior [5].

The interior Hilbert space, |�i, is to be delineated into
a subspace of compound nuclear states, |qi, and a sub-
space of doorway states, |di, orthogonal to it, hd |⌦|qi = 0.
This can be achieved by making a formal substitution6,
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where8

u ⌘ hd |H |qi, ed ⌘ hd |H |di, eq ⌘ hq |H |qi, (15)

are a doorway–CN level coupling strength matrix, fol-
lowed by diagonal matrices of doorway and CN level en-
ergies, respectively. Although ed and eq are diagonal, a
(2 ⇥ 2) block matrix e is not because of the non-vanishing
o↵-diagonal blocks u and u|. The R- and A-matrix in
Eqs. (3) and (6), respectively, attain a 2 ⇥ 2 block matrix
structure due to Eqs. (12, 14). All matrix elements of e (in-
cluding those of its constituent u) and � remain real-valued
and independent of energy, E.

A projection of the R-matrix interior Hilbert space by
Eq. (11) was inspired by Feshbach’s projector operator for-
malism [5], and it turns out to be particularly simple be-
cause it is applied to a denominator

9 of the Q-matrix, in-
stead of the R-matrix, that is, the Green’s function [6, 7].

5This interference may be constructive or destructive.
6The choice of the letters “d” and “q” to label doorway and compound

level subspaces is borrowed from [5–7].
7Matrix subscripts (d, q, ...) serve as labels rather than indices.
8A two-nucleon component of a nuclear Hamiltonian can induce a

chain of linked subspaces of increasing number of particle-holes [16].
9More specifically, the matrix e inside the denominator.
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Note: Re-diagonalization of the R-matrix returns to the original form of the R-matrix formalism!
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Elimination of capture channels yields an effective R-matrix:1 Reduced R-matrix

Eqs. (X.1.7-9a) of Lane and Thomas (LT) express a reduced R-matrix as

R = �|
rA

�1�r (1)

= �|
r [e� ⇠ � E1]�1�r, (2)

where1

⇠ ⌘ �eL
0
e�

|
e , (3)

is a symmetric matrix, and where L0
e = L0

e ⌘ Le � Be for R0
ee = 0, as in

Section X.1 of LT. In order to show how an e↵ective set of reduced R-matrix
parameters may become complex-valued, a singular value decomposition (SVD)
of a symmetric2 matrix e� ⇠ is assumed to exist, i.e.,

e� ⇠ = v✏v|, (4)

where vv| = 1 and ✏ is diagonal3. Utilizing this SVD in Eq. (2) yields an
equivalent expression for the reduced R-matrix of LT,

R = �|
r [v✏v

| � E1]�1�r (5)

= �|
r [v(✏� E1)v|]�1�r (6)

= �|
r (v

|)�1[✏� E1]�1v�1�r (7)

= (�|
r v)[✏� E1]�1(v|�r) (8)

= g|
r [✏� E1]�1gr (9)

where
gr ⌘ v|�r; (10)

(✏, gr) may be viewed as an e↵ective reduced R-matrix parameter set which
could be optimized independently of the formal reduced parameter set (e,�r);
this may be useful when the number of retained channels is much smaller than
the number of resonances.

When Le is independent of energy, E, as is assumed for capture channels
for which L�e = iP�e = i, then the ⇠ is symmetric4 and complex-valued, the
e↵ective reduced R-matrix parameters are complex-valued and independent of
energy, thus maintaining the advantage of energy-independent R-matrix param-
eters. (A conventional Reich-Moore approximation implemented in SAMMY is
recovered for a (real-valued) diagonal e and a pure imaginary diagonal ⇠, for
which v = 1, ✏ = e� ⇠, and gr = �r.)

1Labels r and e refer to “retained” and “eliminated” subset of channels, respectively.
2The same form of SVD holds for complex-valued symmetric matrix, for which v and ✏

may be complex-valued.
3Note that a symmetric matrix e need not be diagonal.
4Its dominant elements lie along its diagonal where they are sum of squares (of RWAs of

eliminated channels for each resonance); o↵-diagonal elements are expected to be much smaller
(albeit not exactly equal to zero) due to the expectation of random distribution of (complex)
phases among the reduced width amplitudes (RWAs) of eliminated capture channels of two
distinct resonances.
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Taken from a draft  
of our WONDER 2023
proceedings.

Note: the form of the 
the R-matrix formalism
remains the same; the
effective parameters 
become complex-valued.

Unlike the conventional 
Reich-Moore approx. [5],
the total capture cross 
section is exact, as in [6].
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Outlook:

• Other potential applications of this R-matrix parameterization:
– Refining the assumptions of the Random Matrix Theory in nuclear physics 

by investigating the effect of direct and doorway states on statistical  
distributions of resonance widths (Porter-Thomas), energy spacing (Wigner)

– A new way for modeling multistep (3p2h “hallway”, …) nuclear reactions

• Look for other ways to exploit similarities among various formalisms

• To be implemented into SAMMY [4] after code modernization
– See the presentation by Doro Wiarda (ORNL) on SAMMY modernization
– https://ncsp.llnl.gov/sites/ncsp/files/2023-03/60_sammy_tpr_2023.pdf 

https://ncsp.llnl.gov/sites/ncsp/files/2023-03/60_sammy_tpr_2023.pdf
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SAMMY and all dependencies are freely available

• The build system has been updated to automatically 
retrieve and build all dependencies.

• The README has been updated.

https://code.ornl.gov/RNSD/SAMMY

https://code.ornl.gov/scale/code/scale-public
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SAMMY Modernization and Maintenance goals
We plan to modernize as follows:

• Write code once and  reuse 

• Transform SAMMY into a modular code, with independent modules with clear interfaces.

• Add new features, which is now easier as only the desired module needs to be changed. 

ENDF Access
In-memory 
Resonance 
Parameters 

Cross section 
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SAMMY Modernization Accomplishments

Made all Resolved 
range algorithms 
independent of 
global parameters.

Provided a class 
that does 0K 
reconstruction

Use AMPX in 
memory 
Resonance 
parameters
+ 
SAMMY C++  
class for easier 
access

ENDF Access
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Doppler 
broadening 
done, 
Res 
Broadening 
In progress

These modernizations will make adding new R-Matrix features easier as changes will be 
localized to the relevant part of the code as no global parameters are used. In addition, 
this will allow more parallelization of the code in the future.
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induced by doorway states is gleaned, wherein each doorway state is parameterized by its
energy, width, and the strength of its coupling to each CN state.

Since a Reich-Moore approximation for retained-channel scattering matrix ought to ap-
proximate the e↵ect of eliminated capture channels taking place via direct, doorway, or CN
reactions, each of the three kinds of reactions contributing to the capture entails a corre-
sponding Reich-Moore parameterization in a first-order approximation: direct contribution
is parameterized by introducing finite diagonal elements of a retained-channel rotation-
generating matrix, doorway contribution is parameterized by doorway capture widths,
while CN contribution is parameterized by conventional Reich-Moore capture widths [5].

We will present evidence of direct and doorway reactions observed in recent measure-
ments of resolved resonance cross sections at the Gaerttner LINAC Center at Rensselaer
Polytechnic Institute, and will outline a path for implementing this new R-matrix param-
eterization into the SAMMY nuclear data evaluation code [4].
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