First studies of $B_{c}^{+} \rightarrow \tau^{+} \nu_{\tau}$ with EDM4hep and FCCAnalyses

Donal Hill, Clement Helsens, Yasmine Amhis
14/12/20
FCC-ee Physics Performance meeting

Introduction

- $B_{c}^{+} \rightarrow \tau^{+} \nu_{\tau}$ is a unique flavour opportunity at FCC-ee
- Not possible at LHCb due to missing energy - lack of constraints and reconstructed information
- No B_{c}^{+}mesons produced at Belle II
- Can be used to measure CKM matrix element $\left|V_{c b}\right|$, but is also highly sensitive to New Physics amplitudes at tree level (e.g. charged Higgs, leptoquark)
- Provides strong tests of NP that are complementary to $b \rightarrow c \ell \nu$ deviations observed in LHCb and B-factory measurements

Event topology for $B_{c}^{+} \tau^{+} \nu_{\tau}$

- Can reconstruct the thrust axis for $Z^{0} \rightarrow q \bar{q}$ and use this to define which hemisphere the particles fall in
- Due to high missing energy in signal decay, the two hemispheres have rather different energy distributions
- Use thrust calculated in FCCAnalyses to study hemisphere energy distributions in $B_{c}^{+} \rightarrow \tau^{+} \nu_{\tau}$ exclusive signal MC and inclusive $Z \rightarrow q \bar{q}, c \bar{c}, b \bar{b}$

Using $\tau^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-} \bar{\nu}_{\tau}$ and other hadronic modes

- Existing feasibility study for CEPC used electron and muon τ decays
- Idea to use hadronic modes for this study - currently using $\tau^{+} \rightarrow \pi^{+} \pi^{+} \pi^{-} \bar{\nu}_{\tau}$ signal MC
- Multi-track modes like $3 \pi \bar{\nu}_{\tau}$ and $3 \pi \pi^{0} \bar{\nu}_{\tau}$ provide τ decay vertexcombined measure of $B_{c}^{+}+\tau^{+}$flight (lifetime)
- Modes like $\pi \pi^{0} \bar{\nu}_{\tau}$ and $3 \pi \pi^{0} \bar{\nu}_{\tau}$ can also be used to understand and benefit from calorimeter reconstruction
- High combined branching fraction across $\pi, \pi \pi^{0}, 3 \pi, 3 \pi \pi^{0}$ modes of $51 \% ~(e+\mu=35 \%)$
- Work shown today does not involve any explicit reconstruction of the decay chain - looking only at event-level information in signal and background

MC samples used

- ROOT files at:
/eos/experiment/fcc/ee/tmp/flatntuples/Z_Zbb_Bc2TauNu/
- Samples produced with Pythia, EvtGen and Delphes in EDM4hep, with post-processing in FCCAnalyses to calculate thrust and hemisphere energy information
- $12,000 B_{c}^{+} \rightarrow \tau^{+} \nu_{\tau}$ after filtering (filter keeps events with a B_{c}^{+} produced in hadronisation)
- $\tau^{+} \rightarrow 3 \pi \bar{\nu}_{\tau}$ generated via TAUHADNU model
- 1 million inclusive $Z^{0} \rightarrow q \bar{q}, c \bar{c}, b \bar{b}$ each
- MVA studies (see later) combine these into a single 1 million event sample using Z^{0} branching fractions

Event-level variables studied (using reco. particles)

Variable	Description
$E^{\text {diff }}[\mathrm{GeV}]$	Max. - Min. hemisphere energy
$E^{\max }[\mathrm{GeV}]$	Max. hemisphere energy (higher of the two)
$E^{\min }[\mathrm{GeV}]$	Min. hemisphere energy (lower of the two)
$E_{c}^{\max (\min)}[\mathrm{GeV}]$	Charged energy in max. (min.) hemisphere
$E_{n}^{\max (\min)}[\mathrm{GeV}]$	Neutral energy in max. (min.) hemisphere
$M_{c}^{\max (\min)}$	Charged multiplicity in max. (min.) hemisphere
$M_{n}^{\max (\min)}$	Neutral multiplicity in max. (min.) hemisphere

$E^{\text {max/min/diff }}$ - clear separation for $B_{c}^{+} \rightarrow \tau^{+} \nu_{\tau}$

- More separation power in the minimum energy hemisphere
- This side is predominantly signal due to missing neutrinos
- In inclusive background, hemispheres have similar energy on average

$E_{n}^{\max / \min }$ - more power in min. E hemisphere (mostly signal side)

- More separation power in the minimum energy hemisphere
- This side is predominantly signal due to missing neutrinos
- In inclusive background, hemispheres have similar energy on average

$M_{c}^{\max / \min }$

- Non-signal sides are similar in terms of charged particle content
- Signal side slightly lower in multiplicity, since we only have three charged tracks in signal decay

$M_{n}^{\max / \min }$

- Non-signal sides are similar in terms of neutral particle content
- Neutral particles are charge-zero objects reconstructed in PFlow
- Signal side quite a bit more quiet

Variable correlations - $B_{c}^{+} \rightarrow \tau^{+} \nu_{\tau}$

- Some strong correlations but also quite a lot of mutual information

Variable correlations - inclusive $Z^{0} \rightarrow q \bar{q}(q=u, d, s)$

- Differences in correlation structure compared to signal (similar in $c \bar{c}$ and $b \bar{b}$, see backup slides)

Multivariate analysis

- Use hemisphere energy information to distinguish $B_{c}^{+} \rightarrow \tau^{+} \nu_{\tau}$ from $Z^{0} \rightarrow q \bar{q}, c \bar{c}, b \bar{b}$
- Create combined background sample of 1 million events using Z^{0} PDG branching fractions
- Use GradientBoostingClassifier in scikit-learn with:
- n_estimators = 200
- learning_rate $=0.4$
- All other hyper-parameters set to defaults
- Split samples into A and B, and train two BDTs (A and B)
- Apply BDT A (B) to sample B (A) to get predictions for full sample

ROC AUC and feature ranking

Variable	Feature importance
$E^{\min }$	0.823
$E_{n}^{\min }$	0.0998
$E^{\max }$	0.0473
$E_{c}^{\min }$	0.0192
$E_{c}^{\max }$	0.00419
$E_{n}^{\max }$	0.00277
$M_{c}^{\min }$	0.00155
$M_{n}^{\min }$	0.000881
$M_{c}^{\max }$	0.000608
$M_{n}^{\max }$	0.000447

- Lower energy hemisphere dominates, but also contributions from charged and neutral sub-totals and the maximum hemisphere energy

BDT score distributions

- Reject all 10^{6} background events with BDT >6.5 cut
- This cut is 19% efficient on $B_{c}^{+} \rightarrow \tau^{+} \nu_{\tau}$ signal
- Need larger background samples to test rejection to higher level
- More signal will help improve the KS-test scores, which aren't bad but can be improved

BDT score for each background type

- BDT is trained on a combined sample of $Z^{0} \rightarrow q \bar{q}, c \bar{c}, b \bar{b}$
- Sub-distributions show that light-quark background is best separated from signal, and $b \bar{b}$ largest in upper tail

Signal purity estimate

- Assume $3 \times 10^{12} Z^{0}$ in FCC-ee operation
- With $\mathcal{B}\left(Z^{0} \rightarrow\right.$ hadrons $)=69.9 \%$, leads to 4.2×10^{12} inclusive background decays
- $N\left(B_{c}^{+} \rightarrow \tau^{+} \nu_{\tau}\right)=868,000$ using the following factors

Factor	Value
$N\left(Z^{0}\right)$	3×10^{12}
$\mathcal{B}\left(Z^{0} \rightarrow b \bar{b}\right)$	0.1512
B_{c}^{+}production rate	7.9×10^{-5} [CEPC paper]
$\mathcal{B}\left(B_{c}^{+} \rightarrow \tau^{+} \nu_{\tau}\right)$	0.0236 [CEPC paper]
$\mathcal{B}\left(\tau^{+} \rightarrow\left\{\pi, \pi \pi^{0}, 3 \pi, 3 \pi \pi^{0}\right\} \bar{\nu}_{\tau}\right)$	0.513

- Signal purity before any selection is thus 2×10^{-7}

Signal purity estimate

- Let's target 1000 signal events with 1000 background (50\% purity) for a $\sim 3 \%$ precision \mathcal{B} measurement
- Total background rejection required: 4.2×10^{9}
- Total signal efficiency required: 1.2×10^{-3}
- BDT achieves 10^{6} rejection for 19% signal efficiency:
- Brings us from 2×10^{-7} to 0.04 purity (another factor 10 needed)
- 4×10^{3} further background rejection required
- Can tolerate an additional signal efficiency of 0.6%
- Selections based on specific signal properties (3π vertex quality, resonant structure, PV separation) must be studied to understand additional background rejection capabilities

Summary and next steps

- Event-level hemisphere energy information provides good discrimination for missing energy mode $B_{c}^{+} \rightarrow \tau^{+} \nu_{\tau}$
- Still factors of rejection required for a high-purity scenario, but signal-specific properties (e.g. 3π vertex and flight) and b-tagging for non-signal side will help
- Larger background and signal samples to be generated, allowing rejection to be better understood
- Most dangerous physics background is $B^{+} \rightarrow \tau^{+} \nu_{\tau}$ - will study this vs. signal in dedicated manner

Backups

Variable correlations - inclusive $Z^{0} \rightarrow c \bar{c}$

Variable correlations - inclusive $Z^{0} \rightarrow b \bar{b}$

