First studies of $B_c^+ \to \tau^+ \nu_\tau$ with EDM4hep and FCCAnalyses

Donal Hill, Clement Helsens, Yasmine Amhis 14/12/20

FCC-ee Physics Performance meeting

Introduction

- + $B_c^+ \rightarrow \tau^+ \nu_{\tau}$ is a unique flavour opportunity at FCC-ee
 - Not possible at LHCb due to missing energy lack of constraints and reconstructed information
 - No $B_c^{\scriptscriptstyle +}$ mesons produced at Belle II
- Can be used to measure CKM matrix element $|V_{cb}|$, but is also highly sensitive to New Physics amplitudes at tree level (e.g. charged Higgs, leptoquark)
- Provides strong tests of NP that are complementary to $b \to c \ell \nu$ deviations observed in LHCb and B-factory measurements

Event topology for $B_c^+ \tau^+ \nu_{ au}$

- Can reconstruct the thrust axis for $Z^0 \rightarrow q\bar{q}$ and use this to define which hemisphere the particles fall in
 - Due to high missing energy in signal decay, the two hemispheres have rather different energy distributions
 - Use thrust calculated in FCCAnalyses to study hemisphere energy distributions in $B_c^+ \rightarrow \tau^+ \nu_{\tau}$ exclusive signal MC and inclusive $Z \rightarrow q\bar{q}, c\bar{c}, b\bar{b}$

Using $\tau^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\bar\nu_{\tau}$ and other hadronic modes

- Existing feasibility study for $\underline{\rm CEPC}$ used electron and muon τ decays
- Idea to use hadronic modes for this study currently using $\tau^+ \to \pi^+\pi^+\pi^-\bar\nu_\tau$ signal MC
 - Multi-track modes like $3\pi\bar{\nu}_{\tau}$ and $3\pi\pi^{0}\bar{\nu}_{\tau}$ provide τ decay vertex combined measure of $B_{c}^{+} + \tau^{+}$ flight (lifetime)
 - Modes like $\pi\pi^0 \bar{\nu}_{\tau}$ and $3\pi\pi^0 \bar{\nu}_{\tau}$ can also be used to understand and benefit from calorimeter reconstruction
 - High combined branching fraction across π , $\pi\pi^0$, 3π , $3\pi\pi^0$ modes of 51% ($e + \mu$ = 35%)
- Work shown today does not involve any explicit reconstruction of the decay chain - looking only at **event-level** information in signal and background

- ROOT files at: /eos/experiment/fcc/ee/tmp/flatntuples/Z_Zbb_Bc2TauNu/
- Samples produced with Pythia, EvtGen and Delphes in EDM4hep, with post-processing in FCCAnalyses to calculate thrust and hemisphere energy information
- + 12,000 $B_c^+ \to \tau^+ \nu_\tau$ after filtering (filter keeps events with a B_c^+ produced in hadronisation)
 - + $\tau^+ \rightarrow 3\pi \bar{\nu}_{\tau}$ generated via TAUHADNU model
- 1 million inclusive $Z^0 \rightarrow q\bar{q}, c\bar{c}, b\bar{b}$ each
 - MVA studies (see later) combine these into a single 1 million event sample using Z^0 branching fractions

Event-level variables studied (using reco. particles)

Variable	Description
$E^{\text{diff}}\left[\text{GeV} ight]$	Max. – Min. hemisphere energy
E^{\max} [GeV]	Max. hemisphere energy (higher of the two)
E^{\min} [GeV]	Min. hemisphere energy (lower of the two)
$E_c^{\max(\min)}$ [GeV]	Charged energy in max. (min.) hemisphere
$E_n^{\max(\min)}$ [GeV]	Neutral energy in max. (min.) hemisphere
$M_c^{\max(\min)}$	Charged multiplicity in max. (min.) hemisphere
$M_n^{\max(\min)}$	Neutral multiplicity in max. (min.) hemisphere

$E^{\rm max/min/diff}$ - clear separation for $B_c^+ \to \tau^+ \nu_\tau$

6

- $\cdot\,$ More separation power in the minimum energy hemisphere
- This side is predominantly signal due to missing neutrinos
- In inclusive background, hemispheres have similar energy on average

$E_n^{\max/\min}$ - more power in min. E hemisphere (mostly signal side)

- More separation power in the minimum energy hemisphere
- This side is predominantly signal due to missing neutrinos
- In inclusive background, hemispheres have similar energy on average

- Non-signal sides are similar in terms of charged particle content
- Signal side slightly lower in multiplicity, since we only have three charged tracks in signal decay

- Non-signal sides are similar in terms of neutral particle content
 - Neutral particles are charge-zero objects reconstructed in PFlow
- Signal side quite a bit more quiet

Variable correlations - $B_c^+ \rightarrow \tau^+ \nu_{\tau}$

• Some strong correlations but also quite a lot of mutual information

Variable correlations - inclusive $Z^0 \rightarrow q\bar{q}$ (q = u, d, s)

• Differences in correlation structure compared to signal (similar in $c\bar{c}$ and $b\bar{b}$, see backup slides)

Multivariate analysis

- Use hemisphere energy information to distinguish $B_c^+ \to \tau^+ \nu_\tau$ from $Z^0 \to q\bar{q}, c\bar{c}, b\bar{b}$
- Create combined background sample of 1 million events using Z^0 PDG branching fractions
- Use GradientBoostingClassifier in scikit-learn with:
 - n_estimators = 200
 - learning_rate = 0.4
 - All other hyper-parameters set to defaults
- Split samples into A and B, and train two BDTs (A and B)
 - $\cdot\,$ Apply BDT A (B) to sample B (A) to get predictions for full sample

ROC AUC and feature ranking

1.0	ROC A (area = 0.992)	Variable	Feature importance
tion 0.9-	ROC B (area = 0.991)	E^{min}	0.823
		E_n^{\min}	0.0998
.0.8 .0		E^{\max}	0.0473
pun 0.7		E_c^{min}	0.0192
kgro		E_c^{\max}	0.00419
Bag Bag		E_n^{\max}	0.00277
		M_c^{min}	0.00155
0.5		M_n^{min}	0.000881
	0.5 0.6 0.7 0.8 0.9 1.0 Signal efficiency	M_c^{\max}	0.000608
		M_n^{\max}	0.000447

• Lower energy hemisphere dominates, but also contributions from charged and neutral sub-totals and the maximum hemisphere energy

BDT score distributions

- Reject all 10^6 background events with ${\rm BDT}>6.5~{\rm cut}$
- This cut is 19% efficient on $B_c^+ \rightarrow \tau^+ \nu_{\tau}$ signal
- Need larger background samples to test rejection to higher level
 - More signal will help improve the KS-test scores, which aren't bad but can be improved

BDT score for each background type

- BDT is trained on a combined sample of $Z^0 \rightarrow q\bar{q}, c\bar{c}, b\bar{b}$
- Sub-distributions show that light-quark background is best separated from signal, and $b\bar{b}$ largest in upper tail

Signal purity estimate

- Assume $3 \times 10^{12} \ Z^0$ in FCC-ee operation
- With $\mathcal{B}(Z^0 \rightarrow \text{hadrons})$ = 69.9%, leads to 4.2×10^{12} inclusive background decays
- $N(B_c^+ \rightarrow \tau^+ \nu_{\tau}) = 868,000$ using the following factors

Factor	Value
$N(Z^0)$	3×10^{12}
$\mathcal{B}(Z^0 \to b\bar{b})$	0.1512
B_c^+ production rate	7.9×10^{-5} [CEPC paper]
$\mathcal{B}(B_c^+ \to \tau^+ \nu_\tau)$	0.0236 [CEPC paper]
$\mathcal{B}(\tau^+ \to \{\pi, \pi\pi^0, 3\pi, 3\pi\pi^0\}\bar{\nu}_\tau)$	0.513

 \cdot Signal purity before any selection is thus 2×10^{-7}

Signal purity estimate

- \cdot Let's target 1000 signal events with 1000 background (50% purity) for a ~ 3% precision ${\cal B}$ measurement
- Total background rejection required: 4.2×10^9
- Total signal efficiency required: 1.2×10^{-3}
- BDT achieves 10^6 rejection for 19% signal efficiency:
 - Brings us from 2×10^{-7} to 0.04 purity (another factor 10 needed)
 - + 4×10^3 further background rejection required
 - $\cdot\,$ Can tolerate an additional signal efficiency of 0.6%
- Selections based on specific signal properties $(3\pi$ vertex quality, resonant structure, PV separation) must be studied to understand additional background rejection capabilities

- Event-level hemisphere energy information provides good discrimination for missing energy mode $B_c^+ \rightarrow \tau^+ \nu_{\tau}$
- Still factors of rejection required for a high-purity scenario, but signal-specific properties (e.g. 3π vertex and flight) and *b*-tagging for non-signal side will help
- Larger background and signal samples to be generated, allowing rejection to be better understood
- Most dangerous physics background is $B^+ \to \tau^+ \nu_\tau$ will study this vs. signal in dedicated manner

Backups

Variable correlations - inclusive $Z^0 \rightarrow c\bar{c}$

Variable correlations - inclusive $Z^0 \rightarrow b\bar{b}$

21