Direct Dark Matter Searches Broader Context

Joachim Kopp (CERN & Uni Mainz) on behalf of the ApPEC Direct Detection Committee | 2 Feb 2021

- Direct detection is unique and complements other DM searches
- Dark Matter Detectors are not single-purpose experiments any more, but have evolved into multi-purpose observatories
- **M** DM detectors rely on advanced infrastructure

Complementarity Between WIMP Searches

CERI

Complementarity Between WIMP Searches

Complementarity Between WIMP Searches

Complementarity Between Axion/ALP Searches

Annihilating DM particles

Gamma rays

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

Neutrinos

р

They are weak, neutral particles that point to their sources and carry information from deep within their origins.

Cosmic rays They are charged particles and <u>are deflected by magnetic fields.</u>

Image: J.A. Aguilar and J. Yang, IceCube/WIPAC

IGIU

+x-rays +radio waves (synchrotron emission) +...

۰

Earth

air shower

Annihilating DM particles

Pro:

 information on DM distribution in the Universe
 connection to the early Universe

Contra:

backgrounds
systematic uncertainties
astrophysical impostors

ynchrotron emission)

Image: J.A. Aguilar and J. Yang, IceCube/WIPAC

Annihilating DM particles

Gamma rays

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

Neutrinos

р

They are weak, neutral particles that point to their sources and carry information from deep within their origins.

Cosmic rays They are charged particles and <u>are deflected by magnetic fields.</u>

Image: J.A. Aguilar and J. Yang, IceCube/WIPAC

Neutrino **PLATFORM**

+x-rays +radio waves (synchrotron emission) +...

۰

Earth

air shower

Annihilating DM particles

Gamma rays

They point to their sources, but they can be absorbed and are created by multiple emission mechanisms.

Neutrinos

They are weak, neutral particles that point to their sources and carry information from deep within their origins.

air shower

Earth

۰

Special case:

WIMP capture & annihilation in the Sun

probes same parameters as direct detection

Waves (synchrotron emission)

Image: J.A. Aguilar and J. Yang, ICeCube/WIPAC

Large Scale Structure

density profile; DM self-interactions

Large Scale Structure

density profile; DM self-interactions

Stochastic Gravitational Waves model-dependent constraints in some WIMP, ALP, and PBH scenarios

Gravitational Lensing

DM substructure; compact DM objects (axion minihalos, primordial black holes)

Large Scale Structure

density profile; DM self-interactions

Stochastic Gravitational Waves model-dependent constraints in some WIMP, ALP, and PBH scenarios

Gravitational Lensing

DM substructure; compact DM objects (axion minihalos, primordial black holes)

Compact Stars axion sources; ALPs as explanation for observed anomalies

Large Scale Structure

density profile; DM self-interactions

Stochastic Gravitational Waves model-dependent constraints in some WIMP, ALP, and PBH scenarios

DM Searches at Colliders

Top-Down Models

✓ missing p⊤ signatures✓ highly model-dependent

Simplified Models

Interplay of DM Search Strategies

Opportunities Beyond Dark Matter Search

Solar Neutrinos

 sub-per cent measurement of *pp* neurino flux
 solar metallicity

problem

Supernova Neutrinos

Beyond the Standard Model

- Mundreds of CEvNS events for Galactic SN
- ☑ all-flavour sensitivity

0v2β Decay

technological similarities

 competitive with dedicated searches

 \mathbf{v} magnetic moments \mathbf{v} non-standard v

interactions

Images: <u>NASA</u>, <u>MPA</u>, <u>CANDLES</u>

- Direct detection is unique and complements other DM searches
- Dark Matter Detectors are not single-purpose experiments any more, but have evolved into multi-purpose observatories
- **M** DM detectors rely on advanced infrastructure

