

Axion/ALP search program introduction

APPEC Direct Dark Matter Detection Report
Community Feedback Meeting
February 2, 2021

Béla Majorovits Max-Planck-Institut für Physik, München

Anna, 13 Ella, 11

Emöke, 6

Axion experiments: next ~decade prospect:

Close the gap: haloscopes + helioscopes

cover whole axion mass range compatible with dark matter!

~ 10 orders of magnitude!

 g_{aN}, g_{aEDM}

Axion & ALP experiments

Axion search prototypes: very good ALP searches

Vast parameter range compatible with ALP DM

Some possibilities for "smaller scale" experiments

Sensitivity of "low background" experiments

Hidden Photons

Sensitivity "for free" to

(solar) ALPs, Hidden Photon or Vector Boson dark matter with "high masses"

No QCD axion sensitivity

compatible with astrophysical observations

But: Independent limits for axions from sun!

Some ALP sensitivity:

Some "fine tuning needed" for gae vs gav

Hidden Photons/Vector bosons:

sensitive to parameter range not yet excluded DM & neutrino experiments: sub eV thresholds!

S W O T table axion, ALP and HP experiments

	Strengths	Weaknesses	Opportunities	T hreats
haloscopes	can cover "classical" mass region in next decade(s)	DM abundace relies on cosmological models	profit from R&D on quantum computing	what if axions sub dominant DM contribution?
	partly already sensitive to QCD axion	high field magnets needed	straight forward to adapt to precise frequency	potentially supressed signal due to axion miniclusters
	precise mass measurement		possibility of transients	
	easy to switch off signal			
helioscopes	all required technologies available	signal not related to DM halo density	could carry payload experiment	
	easy to switch off signal			non
	senstivity to g_ae and g_aN			
TSW	no model dependence of ALP source	QCD axion not accessible	can soon cover astrophysical hints	DM relate deviate
		not related to DM halo densitys	R&D synergies with other fields	ed signal efforts
Low	comes for free	not senstivie to QCD axion	exploitation of some new	_
		and large parts of ALP	parameter range	could
		parameter range		<u> </u>
	can probe g_ae	not necessarily related to		
þ		DM halo densitys		

FUNK

Ø

DA

Béla	Majorovits	ALA A Sait			
	MAX-PLANCK-INSTITUT FÜR PHYSIK				

Experiment	Type	Techn.	<i>g</i> _	Mass range	Status	Limits	Location	Timescale
Experiments with expected sensitivity to DM axion benchmark models								
CASPEr-e ^a	Ø	NMR	aN	$10^{-13} \mathrm{eV} - 1 \mathrm{neV}$	R&D	ALP	BU	
DM Radio ^b	Ø	LC	$a\gamma$	$20 \mathrm{neV} - 0.8 \mu \mathrm{eV}$	R&D	HP	Stanford	2025-30
$ADMX^c$	Ø	C	$a\gamma$	$2\mu\mathrm{eV}$ – $40\mu\mathrm{eV}$	running	axion †	UW	2017-30
HAYSTAC	Ø	CS	$a\gamma$	$15 \mu eV - 35 \mu eV$	running	axion [‡]	Yale	2015-25
CULTASK	Ø	SC/MC	$a\gamma$	$3 \mu \mathrm{eV} - 70 \mu \mathrm{eV}$	running	axion*	CAPP	2021-30
$\mathbf{QUAX^d}$	Ø	SC/DC	$a\gamma$	$30 \mu \mathrm{eV} - 50 \mu \mathrm{eV}$	in prep.	ALP^*	INFN	2021-25
MADMAXe	Ø	DH	$a\gamma$	$40 \mu {\rm eV} - 400 \mu {\rm eV}$	prototype		DESY	2025-35 ^f
$ORGAN^{d}$	Ø	DC/CS	$a\gamma$	$60 \mu {\rm eV} - 210 \mu {\rm eV}$	prototype	ALP	UWA	2025-35 ^f
$\mathbf{IAXO}^{\mathbf{g}}$	\odot	XR	$a\gamma,ae$	$1\mathrm{meV} - 10\mathrm{eV}$	in prep.		DESY	2023-35
ALP experiments								
CASPEr-w ^a	Ø	NMR	ALPN	$10^{-22}{\rm eV} - 1\mu{\rm eV}$	running	ALP	HIM/UCB	
GNOME	Ø	NMR	ALPN	$10^{-21}\mathrm{eV} - 10^{-10}\mathrm{eV}$	running	ALP	global	2017-24
DANCE	Ø	OC	$ALP\gamma$	$\lesssim 10^{-10} \mathrm{eV}$	R&D	ALP	Tokyo	
Up/Download	Ø	MO	$\mathrm{ALP}\gamma$	$10^{-10}\mathrm{eV} - 10^{-7}\mathrm{eV}$	prototype	ALP	UWA	
$ABRA^b$	Ø	LC	$\mathrm{ALP}\gamma$	$1\mathrm{neV} - \mu\mathrm{eV}$	in prep.	ALP	MIT	
SHAFT	Ø	LC	$\mathrm{ALP}\gamma$	$\lesssim 10\mathrm{neV}$	R&D	ALP	BU	
ADMX-SLIC	Ø	LC	$\mathrm{ALP}\gamma$	$\lesssim 0.2 \mu\text{eV}$	R&D	ALP	UFL	
ALPS II	\mathcal{L}	LSW	$\mathrm{ALP}\gamma$	$\lesssim 0.1 \mathrm{meV}$	constr.		DESY	2021
RADES	Ø	MC	$\mathrm{ALP}\gamma$	$\sim 30 - 50 \mu eV$	R&D		CERN	
QUAX	Ø	$e^{-}S$	ALPe	$30\mu\mathrm{eV} - 80\mu\mathrm{eV}$	R&D	ALP	INFN	2021-25
BRASS	Ø	DA	$\mathrm{ALP}\gamma$	$1 \mu {\rm eV} - 1000 \mu {\rm eV}$	in prep.		UH	2022-23
IAXOg	\odot	XR	$\mathrm{ALP}\gamma$	$\lesssim 1 \mathrm{eV}$	in prep.		DESY	2025-35
Hidden photon experiments (no axion or ALP coupling)								
SHUKET	Ø	DA	ϵ	$20\mu\mathrm{eV} - 30\mu\mathrm{eV}$	in prep.	HP	CEA	2024
THE IN LET		- ·	I	• T7 0 T7		TID	17100	

 ϵ

 $2\,\mathrm{eV}\!-\!8\,\mathrm{eV}$

HP

upgrade

KIT

+ low background **experiments**

Recommendation 6: Axion/ALP experiments

European-led efforts should

focus on axion and ALPs mass ranges that are complementary to the established cavity approach

and this is where **European teams** have

a unique opportunity to secure the pioneering role

in achieving sensitivities **in axion/ALP mass ranges** not yet explored by experiments conducted elsewhere.

In parallel, R&D efforts to improve experimental sensitivity and to extend the accessible mass ranges should be supported.

IAXO magnet: based on existing CERN technology from accelerator magnets

MADMAX dipole magnet: being developed in terms of EU-innovation partnership between MPP, Bilfinger-NOELL and CEA-Irfu Sacly

Magnets

Development of **strong (dipole) magnets paramount** for reaching goal of **covering axion DM mass range**

Main challenges:

- Huge superconducting dipole magnets
 large stored energy
 (helioscopes, dielectric haloscopes, dish antenna)
 - → Infrastructure
- Solenoids (cavity experiments)

Potential synergies:

- accelerator magnets,
- medical physics,
- fusion reactors,
- some aspects of solid state physics,

Photon detection

Improve detector sensitivity

increases mass range that can be covered in given time

Main challenges:

- quantum detectors (frequency < 100GHz): with broad bandwidth (JPA, TWPA)
 or beat quantum limit by squeezing
- Single photon detectors (frequency > 10 GHz): extremely low threshold, low background: (QMONs, TES)

Potential synergies:

- Quantum computing
- neutrino experiments & other light DM searches
- •

HAYSTAC: squeezed statesarXiv:2008.01853

MADMAX TWPA arXiv:2101.05815

Low loss dielectrics and cavities

Minimize RF losses in cavities/booster, etc.

→ maximize signal

Main challenges:

- Grow large single crystals or produce amorphous materials low enough dielectric loss (tan delta)
- Develop suitable superconducting cavities,
- Develop meta-materials (plasma haloscope – topological insulators)

Low loss dielectrics for MADMAX arXiv:1901.07401

Photonic crystal **QUAX** arXiv:2002.01816

Potential synergies:

- Radio astronomy
- **Quantum computing**
- RF engineering telecommunication

Superconducting cavities: CAPP arXiv:2002.08769

Cryogenic precision engineering in B-field

Piezo linear stage developed for **MADMAX** by https://www.jpe-innovations.com/

Precision displacement with large stroke at low temperature & strong B-field surrounding tune frequency, minimizing noise, maximize signal

Main challenges:

- Precision machining of large objects
- Precision displacement at extreme conditions
- Macroscopic stroke at cryogenic temperature
- Reliability

Potential synergies

- Cryo-electron microscopy
- Gravitational wave detectors
- Precision displacement technology in general

•

Infrastructure for experiments with axion sensitivity

Infrastructure for projects with QCD axion reach:

similar to particle physics – accelerator R&D needs: space in well-equipped large (enough) experimental halls with good cryogenic infrastructure

- operation of large aperture superconducting magnets,
- operating ultra-sensitive quantum detectors,
- minimize (thermal) RF noise & stable ground in detector surrounding.

DESY.

MORPURGO magnet at CERN

ALPSII at DESY

Infrastructure for axion & ALP experiments

Projects benefit from lab vicinity with world-leading knowledge:

- accelerator technology,
- superconducting magnet R&D,
- detector research,
- low loss RF-technologies,
- cryogenic engineering.

+ top universities

Benefit of support of large European and national labs demonstrated: e.g. by CAST & OSQAR experiments at CERN and ALPS at DESY

Potential of fundamental discoveries with small(er) scale experiments

Opportunities for research program complementary to large scale - for example accelerator - projects

Concluding words:

 Axions naturally emerge as excellent DM candidate from natural solution to standard model strong CP problem

- > possibility to cover full mass range by complementary efforts!
- → tentatively high probability of success!

- Challenging technologies to be developed within axion community but also outside!
- becoming "axion hub"?
- has all prerequisites to find axion in next ~ decade and solve the DM puzzle!
- Cross fertilization between EU INDUSTRY & Scientific research!

